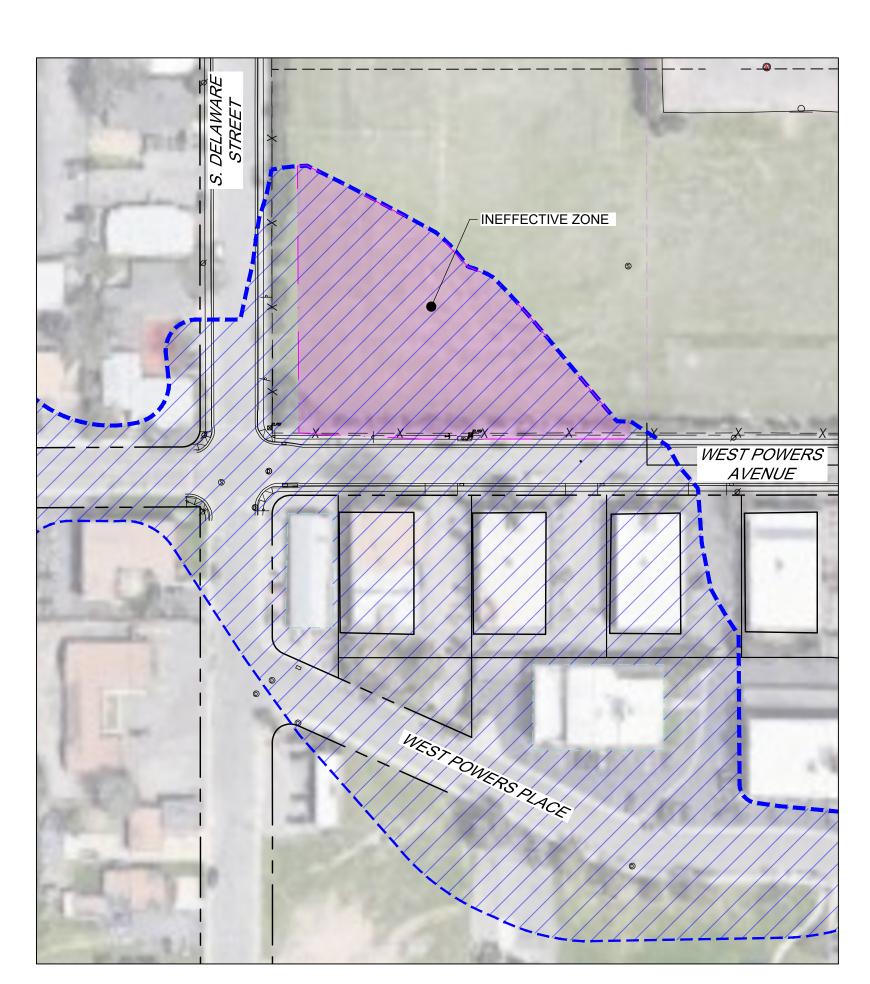


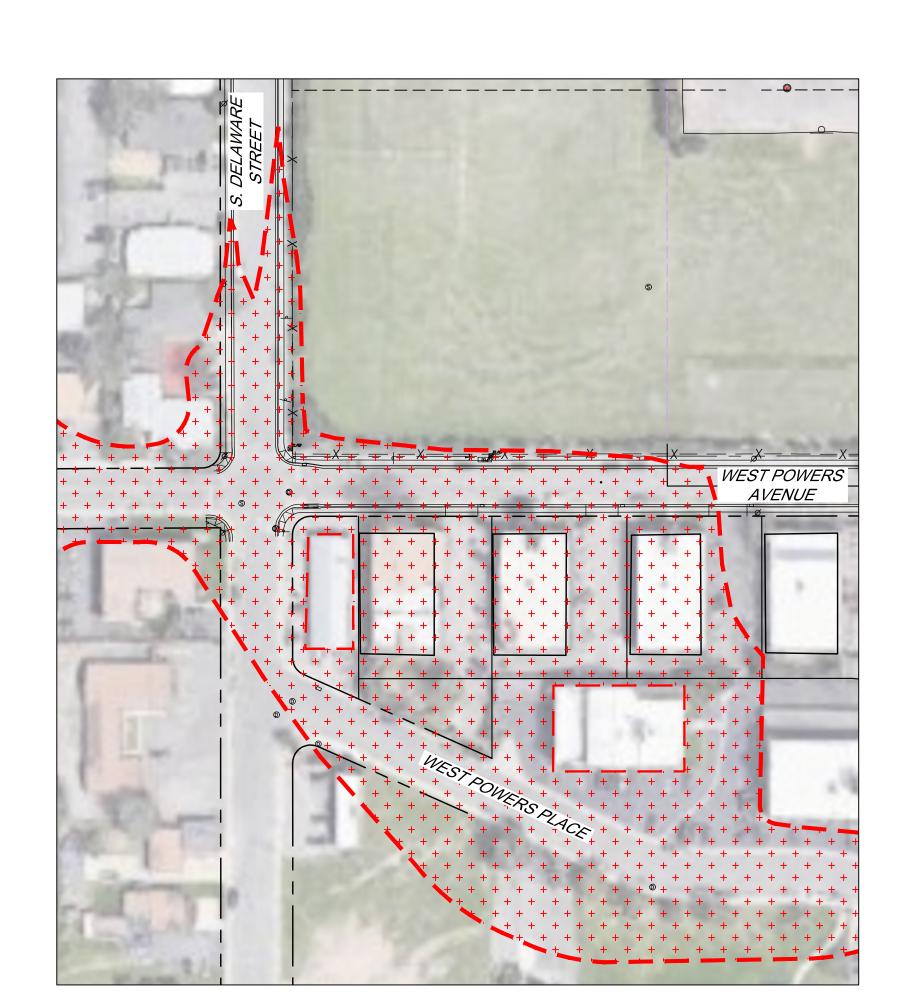
FFE = 5433.65

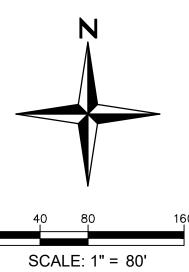

WEST LITTLETON BLVD.

SCALE: 1" = 80'

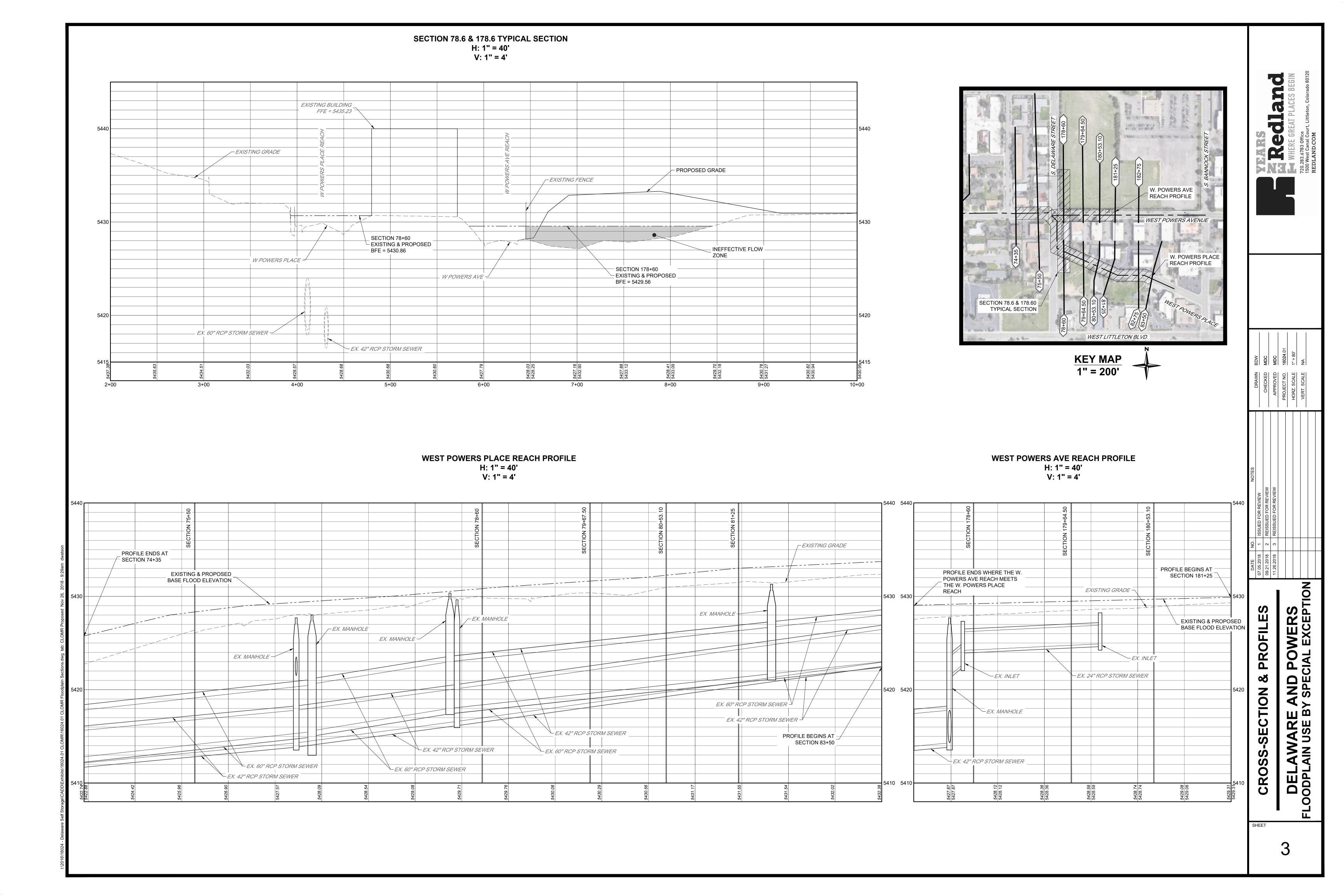


FLOW AREA


100 - YEAR EXISTING CONDITIONS INEFFECTIVE


100-YEAR EFFECTIVE REGULATORY FLOODPLAIN

100-YEAR EXISTING CONDITIONS FLOODPLAIN


100-YEAR PROPOSED CONDITIONS FLOODPLAIN

SHEET

/ARE AND POWERS
USE BY SPECIAL EXCEPTION

PELAW, FLOODPLAIN U

Floodplain Use By Special Exception/Conditional Letter of Map Revision (CLOMR) Request Delaware and Powers Littleton, CO

(FIRM Panel 08005CO451K)

Prepared for:

Mr. David Richardson

Theodore Fitzgerald Richardson 2015 Trust 4725 S. Monaco Street Denver, CO 80237 303-882-7715

Prepared by:

Contact: Mr. Mark Cevaal, P.E.

November 2018 September 2018 July 2018 Project No. 16024.01

Table of Contents

Table of Contents	2
Purpose and Background	3
Purpose	
Background	
Study Limits and Mapping	
Hydrology	
Hydraulics	4
ESA Compliance	
References	

Appendix A – Vicinity Map

Appendix B – FEMA Forms

Appendix C – Hydraulic Calculations

Appendix D -FIRM Panels

Appendix E – Reference Information

Appendix F – Ineffective Floodplain Modeling Supplemental Information

Appendix G – ESA Compliance Documentation

Appendix H – Work Map

Purpose and Background

Purpose

The subject property for this Floodplain Use by Special Exception/Conditional Letter of Map Revision (CLOMR) request is located at the northeast corner of the intersection of West Powers Avenue and South Delaware Street in Littleton, CO; hereafter referred to as the Site. The purpose of this request is to remove a portion of the Site from the 100-Year FEMA floodplain.

Background

The flooding source associated with the Site is Slaughterhouse Gulch. A Letter of Map Revision (LOMR) which included the reach adjacent to the Site – Application for Letter of Map Revision Slaughterhouse Gulch was prepared by Boyle Engineering in May 1995. The effective hydrologic and hydraulic modeling from the LOMR was used to create the Duplicate Effective HEC-RAS model for this CLOMR.

Study Limits and Mapping

The Site is contained within FEMA FIRM Panel 08005CO451K, effective December 17, 2010; located within the city of Littleton, Arapahoe County, Colorado. The study limits were established based on the Effective Model from the LOMR; the downstream limit for this study is Station 65+75, which is located directly downstream of the Powers Park Detention Pond and the upstream limit is Station 83+50 which is located approximately midway between South Delaware Street and South Bannock Street.

The horizontal datum for the Site is based upon the Colorado Coordinate System of 1983 Central Zone (NAD 83, 2011).

Topographic mapping used for the project was obtained by field survey, performed by Aztec Consultants, Inc., on March 22, 2018. The vertical datum of the field survey is NAVD88. It should be noted that the vertical datum for the effective LOMR is NAVD29, the elevation difference being that ELNAVD88=ELNAVD29+3.06' for the Site.

Hydrology

The hydrology used for this report was obtained from the effective LOMR for Slaughterhouse Gulch. The HEC-2 analysis in the LOMR included 100-year flow rates at the same cross-section locations for this analysis. At the upstream limit (Station 83+50) the 100-year flow rate is 800 cfs, the flow rate increases gradually downstream, to a peak 100-year flow rate of 1,130 cfs at the downstream limit (Station 65+75).

Hydraulics

The Effective Conditions Model (FEMA regulatory model) was obtained from the effective LOMR. An electronic copy of the HEC-2 input was not available from the Urban Drainage and Flood Control District, so the cross-section data was manually entered into the HEC-RAS version 5.0.3 computer program. After vertically adjusting the cross-sectional elevations to the current NAVD88 datum, the HEC-RAS model was executed to obtain the Duplicate Effective Conditions Model. The Effective Conditions Model consisted of a single reach which followed the storm sewer alignment in West Powers Place then north along Delaware Street to West Powers Avenue, then west to the Powers Park Detention Pond. Excerpts from the Slaughterhouse Gulch Application for LOMR are included in Appendix E.

Upon analysis of the Effective Conditions Model, it was concluded that due to the significant differences in elevation as compared to the new field-surveyed topographic data, the revisions necessary for this model would require the preparation of an Existing Conditions Model in lieu of the Corrected Effective Model. According to the effective LOMR report, the construction plans for the LOMR improvements note that 'Topographic mapping is from aerial survey reconnaissance performed in 1985 during the preliminary phase of the project, and supplemental topographical field surveys performed in 1989 for limited areas of the site. Topographic mapping is provided for general information only and is not to be considered exact.'

Existing Conditions Model

As stated previously, the Effective Conditions Model consisted of a single reach which followed the storm sewer alignment in West Powers Avenue, then south along Delaware Street to West Powers Place. Based on field investigations, it appears that surface runoff within West Powers Place could potentially spill over to the north in between buildings and into West Powers Avenue, then flow west towards Delaware Street, where the two reaches combine. Since this possibility was not reflected in the Effective Conditions Model, a second reach was added within West Powers Avenue along with two lateral weirs in the West Powers Place reach to allow runoff to potentially spill over to West Powers Avenue, if the water surface elevations were high enough. The two Lateral weirs were added in between buildings in the West Powers Place Reach - between Stations 79+64.50/80+53.10 (Lateral Weir 1) and 81+25/82+75 (Lateral Weir 2) - in order to determine if any flow spills over into the West Powers Avenue Reach. The other significant difference between the Existing Conditions Model and the Effective Conditions Model is the implementation of new field-surveyed topography.

The nine cross-sections locations used in the Effective Conditions Model – Stations 65+75, 68+25, 71+00, 74+35, 75+50, 78+60, 81+25, 82+75, and 83+50 were field-surveyed to obtain updated topographic data for the creation of and Existing Conditions Model. Two additional cross-section locations, Stations 79+64.50 and 80+53.10 were

incorporated into the model to provide further detail within the Site. The cross-sections at Stations 78+60, 79+64.50, 80+53.10, 81+25, and 82+75 where extended into the Site and used to establish the West Powers Avenue reach that has been added to the modelling. The stations were renumbered in the West Powers Avenue reach to Stations 178+60, 179+64.50, 180+53.10, 181+25, and 182+75, to avoid confusion between the two reaches.

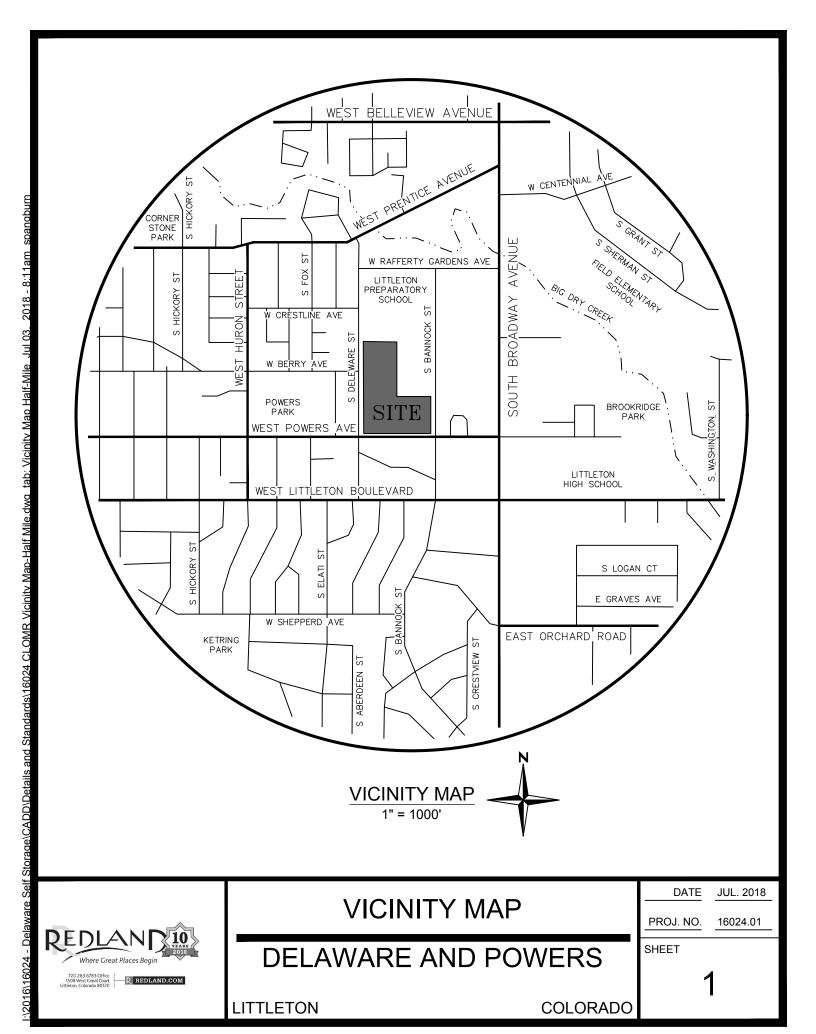
The results from the Existing Conditions Model showed 100.8 cfs overtopped Lateral Weir 1, flowing north to West Powers Avenue, which is reflected at Station 179+64.50 in the West Powers Avenue reach of the model. Lateral Weir 2 only showed a minimal amount of flow overtopping to West Powers Avenue at Station 181+25.

It should be noted that in the Effective Conditions Model, at two cross-sections locations which are located within the Site (Stations 82+75 and 81+25), the cross-section topography was truncated within the Site. As a result, the Effective Conditions Model reflected no conveyance of runoff within the Site (ineffective flow). For the establishment of the Existing Conditions Model for the two added cross-sections within the Site (Stations 179+64.50 and 180+53.10) this condition was maintained to be shown as ineffective flow as it was in the FEMA regulatory model.

Additional information is provided in 'Appendix F – Ineffective Floodplain Modeling Supplemental Information' in order to help explain the basis for the ineffective flow elements as reflected in the Existing Conditions Model. A written description along with figures and annotated Google Streetview images have been included for clarity.

Proposed Conditions Model

The Existing Conditions Model was used as the base model to create the Proposed Conditions Model. The only difference between the two models is that the topography within the Site was modified to reflect the developed conditions adjacent to the north right-of-way of West Powers Avenue at cross-section Stations 178+60, 179+64.50, 180+53.10, and 181+25. The water surface elevations between the Existing Conditions Model and the Proposed Conditions Model were then compared to identify if there were any impacts as a result of the developed conditions topography. The results showed that there are no negative impacts created as a result of the proposed grading improvements within the Site, as the water surface elevations only differed in two locations – Stations 181+25 and 180+53.10, where the Proposed Conditions Model water surface elevations were 0.01 feet lower than the Existing Conditions Model water surface elevations.


ESA Compliance

A Study showing compliance with the Endangered Species Act was performed and the compliance documentation is included in Appendix G.

References

- 1. <u>Flood Insurance Study, Arapahoe County Colorado and Incorporated Areas, Volume 4 of 5, FEMA, February 17, 2017.</u>
- 2. <u>Flood Insurance Rate Map</u>, Panel 08005CO451K, effective December 17, 2010; located within the city of Littleton, Arapahoe County, Colorado.
- 3. <u>Urban Storm Drainage Criteria Manual, Volume 1-3,</u> Urban Drainage and Flood Control District, Denver Colorado, latest online edition.
- 4. <u>Application for Letter of Map Revision, Slaughterhouse Gulch,</u> Boyle Engineering Corporation, May 1995.
- 5. <u>Major Drainageway Planning Upper Slaughterhouse Gulch Phase B Report,</u> Water Resource Consultants, Inc., March 1983.

Appendix A – Vicinity Map

Appendix B – FEMA Forms

U.S. DEPARTMENT OF HOMELAND SECURITY FEDERAL EMERGENCY MANAGEMENT AGENCY

O.M.B No. 1660-0016 Expires February 28, 2014

OVERVIEW & CONCURRENCE FORM

PAPERWORK BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 1 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless it displays a valid OMB control number. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Department of Homeland Security, Federal Emergency Management Agency, 1800 South Bell Street, Arlington, VA 20958-3005, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. Please do not send your completed survey to the above address.

PRIVACY ACT STATEMENT

AUTHORITY: The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public Law 93-234.

PRINCIPAL PURPOSE(S): This information is being collected for the purpose of determining an applicant's eligibility to request changes to National Flood Insurance Program (NFIP) Flood Insurance Rate Maps (FIRM).

ROUTINE USE(S): The information on this form may be disclosed as generally permitted under 5 U.S.C § 552a(b) of the Privacy Act of 1974, as amended. This includes using this information as necessary and authorized by the routine uses published in DHS/FEMA/NFIP/LOMA-1 National Flood Insurance Program (NFIP); Letter of Map Amendment (LOMA) February 15, 2006, 71 FR 7990.

DISCLOSURE: The disclosure of information on this form is voluntary; however, failure to provide the information requested may delay or prevent FEMA from processing a determination regarding a requested change to a (NFIP) Flood Insurance Rate Maps (FIRM).

A. REQUESTED RESPONSE FROM DHS-FEMA

This	request is for	a (check one):
		A letter from DHS-FEMA commenting on whether a proposed project, if built as proposed, would justify a map revision, or leading the commentary of the commen
	LOMR: elevations. (S	A letter from DHS-FEMA officially revising the current NFIP map to show the changes to floodplains, regulatory floodway or flood see 44 CFR Ch. 1, Parts 60, 65 & 72)

B. OVERVIEW

1.	The NFIP map panel(s) affected for all impacted communities is (are):											
Con	nmun	ity No.	Com	munity Na	me				State	Map No.	Panel No.	Effective Date
Exa	mple	: 480301 480287		of Katy is County					TX TX	48473C 48201C	0005D 0220G	02/08/83 09/28/90
080	05	400207		of Littleton					CO	08005	0451K	12/17/10
			Arap	ahoe Cour	nty							
2.	a. F	looding Sour	ce: Sla	aughterhou	ise Gu	llch						
	b. T	ypes of Flood	ding:		е	☐ Coastal	☐ Shallow	Flooding (e.g.,	Zones AO	and AH)		
	☐ Alluvial fan ☐ Lakes ☐ Other (Attach Description)											
3.	Proj	ect Name/Ide	entifier	r: Delaware	and I	Powers						
4.	FEN	/IA zone desi	gnatio	ns affected	d: AE	(choices: A, AH,	AO, A1-A30,	A99, AE, AR, \	/, V1-V30, \	VE, B, C, D, X)		
5.	Bas	is for Reques	st and	Type of Re	evision	:						
	a.	The basis fo	or this	revision re	quest	is (check all that a	apply)					
		☑ Physical	Chan	ge	⊠ In	nproved Methodol	ogy/Data	☐ Regulatory	/ Floodway	Revision	☐ Base Map Ch	nanges
	☐ Coastal Analysis		sis			☐ Hydrologic Analysis			☐ Corrections			
	☐ Weir-Dam Changes ☐ Levee Ce		evee Certification	on Alluvial Fan Analysis			☐ Natural Changes					
		New Top	ograp	hic Data	□ o	ther (Attach Desc	ription)					
	Note: A photograph and narrative description of the area of concern is not required, but is very helpful during review.											

b. The area of revision encompasses the following structures (check	b. The area of revision encompasses the following structures (check all that apply)							
Structures:	ee/Floodwall Bridge/Culvert							
☐ Dam		Other (Attach Desc	ription)					
6. 🗵 Documentation of ESA compliance is submitted (required to initiate 0	5. 🗵 Documentation of ESA compliance is submitted (required to initiate CLOMR review). Please refer to the instructions for more information.							
C. REVI	EW FEE							
Has the review fee for the appropriate request category been included?		Yes Fee a	amount: \$					
		No, Attach Explanation	on					
Please see the DHS-FEMA Web site at http://www.fema.gov/plan/prevent/fl	nm/frm_fees.shtm fc	or Fee Amounts and E	exemptions.					
D. SIGN	IATURE							
All documents submitted in support of this request are correct to the best of r fine or imprisonment under Title 18 of the United States Code, Section 1001.		derstand that any false	statement may be punishable by					
Name: David Richardson	Company: Theod	ore Fitzgerald Richards	son 2015Trust					
Mailing Address: 4725 S. Monaco Street, Suite 200	Daytime Telephor	ne No.: 303-882-7715	Fax No.:					
Denver, CO 80237	E-Mail Address:							
Signature of Requester (required):		Date:						
As the community official responsible for floodplain management, I hereby as (LOMR) or conditional LOMR request. Based upon the community's review, of the community floodplain management requirements, including the requirencessary Federal, State, and local permits have been, or in the case of a complicant has documented Endangered Species Act (ESA) compliance to FE LOMR requests, I acknowledge that compliance with Sections 9 and 10 of authorized, funded, or being carried out by Federal or State agencies, doct of the ESA will be submitted. In addition, we have determined that the land or will be reasonably safe from flooding as defined in 44CFR 65.2(c), and the documentation used to make this determination.	we find the complete ments for when fill is inditional LOMR, will MA prior to FEMA's the ESA has been ac umentation from the and any existing or	ed or proposed project s placed in the regulato I be obtained. For Con s review of the Conditi chieved independently e agency showing its co proposed structures to	meets or is designed to meet all bry floodway, and that all ditional LOMR requests, the fonal LOMR application. For of FEMA's process. For actions compliance with Section 7(a)(2) be removed from the SFHA are					
Community Official's Name and Title:		Community Name: Cit	ty of Littleton					
Mailing Address:	Daytime Telephor	ne No.:	Fax No.:					
2255 West Berry Avenue Littleton, CO 80120	E-Mail Address:		1					
Community Official's Signature (required):		Date:						
CERTIFICATION BY REGISTERED PROFESSI	ONAL ENGINEER	R AND/OR LAND SU	JRVEYOR					
This certification is to be signed and sealed by a licensed land surveyor, regiselevation information data, hydrologic and hydraulic analysis, and any other secribed in the MT-2 Forms Instructions. All documents submitted in supportant false statement may be punishable by fine or imprisonment under Title 1	supporting information of this request are	on as per NFIP regulation on as per NFIP regulation of received to the best of	ons paragraph 65.2(b) and as my knowledge. I understand that					
Certifier's Name: Stephen R. Pangburn	License No.: 358	xpiration Date: 10/2019						
Company Name: Redland	Telephone No.: 7	ax No.:						
Signature:	Date:	E-Mail Address: spangburn@redland.com						

Ensure the forms that are appropriate to your revision request are included in your submittal.			
rges or water-surface elevations			
ddition/revision of bridge/culverts, ee/floodwall, addition/revision of dam			
I elevations			
astal structure Seal (Optional)			
s on alluvial fans			

U.S. DEPARTMENT OF HOMELAND SECURITY FEDERAL EMERGENCY MANAGEMENT AGENCY

RIVERINE HYDROLOGY & HYDRAULICS FORM

O.M.B No. 1660-0016 Expires February 28, 2014

PAPERWORK BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 3.5 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless a valid OMB control number appears in the upper right corner of this form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Department of Homeland Security, Federal Emergency Management Agency, 1800 South Bell Street, Arlington VA 20958-3005, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. **Please do not send your completed survey to the above address.**

PRIVACY ACT STATEMENT

AUTHORITY: The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public Law 93-234.

PRINCIPAL PURPOSE(S): This information is being collected for the purpose of determining an applicant's eligibility to request changes to National Flood Insurance Program (NFIP) Flood Insurance Rate Maps (FIRM).

ROUTINE USE(S): The information on this form may be disclosed as generally permitted under 5 U.S.C § 552a(b) of the Privacy Act of 1974, as amended. This includes using this information as necessary and authorized by the routine uses published in DHS/FEMA/NFIP/LOMA-1 National Flood Insurance Program (NFIP); Letter of Map Amendment (LOMA) February 15, 2006, 71 FR 7990.

DISCLOSURE: The disclosure of information on this form is voluntary; however, failure to provide the information requested may delay or prevent FEMA from processing a determination regarding a requested change to a NFIP Flood Insurance Rate Maps (FIRM).

Flo	Flooding Source: Slaughterhouse Gulch				
No	ote: Fill out one form for each flooding source	estudied			
		A. HYDROLOG	Υ		
1.	Reason for New Hydrologic Analysis (chec	k all that apply)			
	Not revised (skip to section B)	☐ No existing analysis		☐ Improved data	
	☐ Alternative methodology	☐ Proposed Conditions (CLOM	R)	☐ Changed physical	condition of watershed
2.	2. Comparison of Representative 1%-Annual-Chance Discharges				
	Location Dra	ainage Area (Sq. Mi.)	Effective/l	FIS (cfs)	Revised (cfs)
3.	Methodology for New Hydrologic Analysis	(check all that apply)			
	☐ Statistical Analysis of Gage Records	☐ Precipitation/Runoff Model =	Specify M	lodel:	
	☐ Regional Regression Equations	☐ Other (please attach descript	ion)		
	Please enclose all relevant models in digital new analysis.	I format, maps, computations (includi	ing computa	ation of parameters), and	d documentation to support the
4.	Review/Approval of Analysis				
	If your community requires a regional, state	, or federal agency to review the hyd	rologic ana	lysis, please attach evid	ence of approval/review.
5.	Impacts of Sediment Transport on Hydrolog	Jy			
	Is the hydrology for the revised flooding sou	urce(s) affected by sediment transpor	t? 🗌 Ye	s 🗌 No	
	If yes, then fill out Section F (Sediment Tran	nsport) of Form 3. If No, then attach	your explar	ation	

B. HYDRAULICS						
1. Reach to be Revised						
Description		tion Cro	ss Section	Water-Surface Effective	Elevations (ft.) Proposed/Revised	
Downstream Limit*	West Limit - Sect	ion L 74+	35	5425.75	5425.75	
Upstream Limit*	East Limit	<u>83</u> +	50	5434.20	5434.20	
*Proposed/Revised elevations m	nust tie-into the Effective e	levations within 0.5 foot a	t the downstrean	n and upstream limits of re	evision.	
2. <u>Hydraulic Method/Model Use</u>	. Hydraulic Method/Model Used: HEC-RAS 5.0.3					
Pre-Submittal Review of Hyd DHS-FEMA has developed to respectively. We recommend 4.	wo review programs, CHE0	C-2 and HEC-RAS model	s with CHECK-2	and CHECK-RAS.	•	
Models Submitted	<u>Natura</u>			Floodway Run	<u>Datum</u>	
Duplicate Effective Model*	File Name: 16024_DelawareSS	Plan Name: Duplicate Effective	File Name	: Plan Name	: NAVD88	
Corrected Effective Model*	File Name:	Plan Name:	File Name	: Plan Name	: 	
Existing or Pre-Project Conditions Model	File Name: 16024_DelawareSS	Plan Name: Ex Conditions-Post Site Visit5	File Name	: Plan Name	:NAVD88_	
Revised or Post-Project Conditions Model	File Name: 16024_DelawareSS	Plan Name: Proposed Conditions-Post Site V	File Name	: Plan Name	: NAVD88_	
Other - (attach description)	File Name:	Plan Name:	File Name	: Plan Name	: NAVD88_	
* For details, refer to the corresp	onding section of the instr	ructions.				
	⊠ Di	gital Models Submitted?	(Required)			
	C	. MAPPING REQUIR	EMENTS			
A certified topographic work map must be submitted showing the following information (where applicable): the boundaries of the effective, existing, and proposed conditions 1%-annual-chance floodplain (for approximate Zone A revisions) or the boundaries of the 1%- and 0.2%-annual-chance floodplains and regulatory floodway (for detailed Zone AE, AO, and AH revisions); location and alignment of all cross sections with stationing control indicated; stream, road, and other alignments (e.g., dams, levees, etc.); current community easements and boundaries; boundaries of the requester's property; certification of a registered professional engineer registered in the subject State; location and description of reference marks; and the referenced vertical datum (NGVD, NAVD, etc.). Digital Mapping (GIS/CADD) Data Submitted (preferred)						
Source: Field Survey		Date: <u>3/22</u>	2018			
Accuracy: 0.1'						

Note that the boundaries of the existing or proposed conditions floodplains and regulatory floodway to be shown on the revised FIRM and/or FBFM must tie-in with the effective floodplain and regulatory floodway boundaries. Please attach **a copy of the effective FIRM and/or FBFM**, at the same scale as the original, annotated to show the boundaries of the revised 1%-and 0.2%-annual-chance floodplains and regulatory floodway that tie-in with the boundaries of the effective 1%-and 0.2%-annual-chance floodplain and regulatory floodway at the upstream and downstream limits of the area on revision.

☑ Annotated FIRM and/or FBFM (Required)

D. COMMON REGULATORY REQUIREMENTS*

1.	For LOMR/CLOMR requests, do Base Flood Elevations (BFEs) increase?	☐ Yes ☒ No		
	a. For CLOMR requests, if either of the following is true, please submit evidence of compliance with Section 65.12 of the N	NFIP regulations:		
	 The proposed project encroaches upon a regulatory floodway and would result in increases above 0.00 foot compa conditions. 	red to pre-project		
	 The proposed project encroaches upon a SFHA with or without BFEs established and would result in increases abordomerad to pre-project conditions. 	ve 1.00 foot		
b. Does this LOMR request cause increase in the BFE and/or SFHA compared with the effective BFEs and/or SFHA? If Yes, please attach proof of property owner notification and acceptance (if available) . Elements of and examples of property onotifications can be found in the MT-2 Form 2 Instructions.				
2.	Does the request involve the placement or proposed placement of fill?	⊠ Yes □ No		
	If Yes, the community must be able to certify that the area to be removed from the special flood hazard area, to include any structures or proposed structures, meets all of the standards of the local floodplain ordinances, and is reasonably safe from flooding in accordance with the NFIP regulations set forth at 44 CFR 60.3(A)(3), 65.5(a)(4), and 65.6(a)(14). Please see the MT-2 instructions for more information.			
3.	For LOMR requests, is the regulatory floodway being revised?	☐ Yes ☐ No		
	If Yes, attach evidence of regulatory floodway revision notification . As per Paragraph 65.7(b)(1) of the NFIP Regulations, required for requests involving revisions to the regulatory floodway. (Not required for revisions to approximate 1%-annual-char [studied Zone A designation] unless a regulatory floodway is being established. Elements and examples of regulatory floodway notification can be found in the MT-2 Form 2 Instructions.)	nce floodplains		
4. For CLOMR requests, please submit documentation to FEMA and the community to show that you have complied with Sections 9 and 10 of Endangered Species Act (ESA).				
	actions authorized, funded, or being carried out by Federal or State agencies, please submit documentation from the ag npliance with Section 7(a)(2) of the ESA. Please see the MT-2 instructions for more detail.	ency showing its		

^{*} Not inclusive of all applicable regulatory requirements. For details, see 44 CFR parts 60 and 65.

O.M.B. NO. 1660-0016 Expires February 28, 2014

RIVERINE STRUCTURES FORM

PAPERWORK BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 7 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless a valid OMB control number appears in the upper right corner of this form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Department of Homeland Security, Federal Emergency Management Agency, 1800 South Bell Street, Arlington, VA 20598-3005, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. Please do not send your completed survey to the above address.

PRIVACY ACT STATEMENT

AUTHORITY: The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public Law 93-234.

PRINCIPAL PURPOSE(S): This information is being collected for the purpose of determining an applicant's eligibility to request changes to National Flood Insurance Program (NFIP) Flood Insurance Rate Maps (FIRM).

amen Flood DISCI	ROUTINE USE(S): The information on this form may be disclosed as generally permitted under 5 U.S.C § 552a(b) of the Privacy Act of 1974, as amended. This includes using this information as necessary and authorized by the routine uses published in DHS/FEMA/NFIP/LOMA-1 National Flood Insurance Program; Letter of Map Amendment (LOMA) February 15, 2006, 71 FR 7990. DISCLOSURE: The disclosure of information on this form is voluntary; however, failure to provide the information requested may delay or prevent FEMA from processing a determination regarding a requested change to a NFIP Flood Insurance Rate Maps (FIRM).						
Flood	Flooding Source: Slaughterhouse Gulch						
Note	: Fill out one form for ea	ach flooding source studied.					
			A. GENERAL				
Comp	Channelization Bridge/Culvert Dam Levee/Floodwall	ction(s) for each Structure liste complete Section B complete Section C complete Section D complete Section E ttcomplete Section F (if r					
Descr	iption Of Modeled Struc	<u>cture</u>					
1.	Name of Structure: SI	aughterhouse Gulch Channe	lization in West Powers Avenue	Upstream of Delaware Street			
	Type (check one):	□ Channelization	☐ Bridge/Culvert	☐ Levee/Floodwall	☐ Dam		
	Location of Structure:	30 feet upstream of Delawar	e Street				
	Downstream Limit/Cro	ess Section: 78+60					
	Upstream Limit/Cross	Section: <u>82+75</u>					
2.	Name of Structure:						
	Type (check one):	☐ Channelization	☐ Bridge/Culvert	☐ Levee/Floodwall	☐ Dam		
	Location of Structure:						
	Downstream Limit/Cro	ss Section:					
	Upstream Limit/Cross	Section:					
3.	Name of Structure:						
	Type (check one)	☐ Channelization	☐ Bridge/Culvert	☐ Levee/Floodwall	☐ Dam		
	Location of Structure:						
	Downstream Limit/Cro	ss Section:					
	Upstream Limit/Cross	Section:					
		NOTE: FOR MORE STRI	ICTURES, ATTACH ADDITION	IAI PAGES AS NEEDED			
		HOTE. FOR WORE STRU	OTORES, ATTACIT ADDITION	AL I AGEO AG NEEDED.			

	B. CHAN	INELIZATION				
Floo	ding Source: Slaughterhouse Gulch					
Nam	ne of Structure: <u>Slaughterhouse Gulch Channelization in West Pov</u>	vers Avenue Upstream of Delaware Str	reet			
1.	Hydraulic Considerations					
	The channel was designed to carry 820 (cfs) and/or the 100-year. The design elevation in the channel is based on (check one):	r flood.				
	Subcritical flow □ Critical flow	☐ Supercritical flow	☐ Energy grade line			
	If there is the potential for a hydraulic jump at the following location jump is controlled without affecting the stability of the channel.	ons, check all that apply and attach an	explanation of how the hydraulic			
	☐ Inlet to channel ☐ Outlet of channel ☐ At Drop Struct	ures				
	Other locations (specify):					
2.	Channel Design Plans					
	Attach the plans of the channelization certified by a registered pr	ofessional engineer, as described in the	e instructions.			
3.	Accessory Structures					
	The channelization includes (check one):					
	<u> </u>	ructures	ns			
	☐ Transitions in cross sectional geometry ☐ Debris basin/detention basin [Attach Section D (Dam/Basin)] ☐ Energy dissipator					
	☐ Weir ☐ Other (Describe):					
4.	Sediment Transport Considerations					
A	Are the hydraulics of the channel affected by sediment transport?	☐ Yes No				
	f yes, then fill out Section F (Sediment Transport) of Form 3. If No, sidered.	then attach your explanation for why s	ediment transport was not			
-		GE/CULVERT				
Floo	ding Source:					
Nam	ne of Structure:					
1.	This revision reflects (check one):					
	☐ Bridge/culvert not modeled in the FIS					
	☐ Modified bridge/culvert previously modeled in the FIS					
	$\hfill \square$ Revised analysis of bridge/culvert previously modeled in the F	IS				
	Hydraulic model used to analyze the structure (e.g., HEC-2 with self different than hydraulic analysis for the flooding source, justify we the structures. Attach justification.		looding source could not analyze			
3.	Attach plans of the structures certified by a registered professional (check the information that has been provided):	l engineer. The plan detail and informa	ation should include the following			
	☐ Dimensions (height, width, span, radius, length)	☐ Distances Between Cross Sections	S			
	☐ Shape (culverts only)	☐ Erosion Protection				
	☐ Material	☐ Low Chord Elevations – Upstream	and Downstream			
	☐ Beveling or Rounding	☐ Top of Road Elevations – Upstream	m and Downstream			
	☐ Wing Wall Angle	☐ Structure Invert Elevations – Upstr	ream and Downstream			
	☐ Skew Angle	Stream Invert Elevations – Upstream	am and Downstream			
		☐ Cross-Section Locations				
4.	Sediment Transport Considerations					
	Are the hydraulics of the structure affected by sediment transport?	Yes No				
	If Yes, then fill out Section F (Sediment Transport) of Form 3. If n	o then attach an explanation				

	D. DAM/BASIN
Flo Nai	oding Source: me of Structure:
1.	This request is for (check one):
2.	The dam/basin was designed by (check one): Federal agency State agency Private organization Local government agency
	Name of the agency or organization:
3.	The Dam was permitted as (check one):
	Provide the permit or identification number (ID) for the dam and the appropriate permitting agency or organization
	Permit or ID number Permitting Agency or Organization
	a.
	Provided related drawings, specification and supporting design information.
4.	Does the project involve revised hydrology? ☐ Yes ☐ No
	If Yes, complete the Riverine Hydrology & Hydraulics Form (Form 2).
	Was the dam/basin designed using critical duration storm? (must account for the maximum volume of runoff)
	Yes, provide supporting documentation with your completed Form 2.
	☐ No, provide a written explanation and justification for not using the critical duration storm.
5.	Does the submittal include debris/sediment yield analysis? ☐ Yes ☐ No
	If Yes, then fill out Section F (Sediment Transport). If No, then attach your explanation for why debris/sediment analysis was not considered?
6.	Does the Base Flood Elevation behind the dam/basin or downstream of the dam/basin change?
	If Yes, complete the Riverine Hydrology & Hydraulics Form (Form 2) and complete the table below.
	Stillwater Elevation Behind the Dam/Basin
	FREQUENCY (% annual chance) FIS REVISED
	10-year (10%)
	50-year (2%)
	100-year (1%)
	500-year (0.2%)
_	Normal Pool Elevation
7.	Please attach a copy of the formal Operation and Maintenance Plan
	E. LEVEE/FLOODWALL

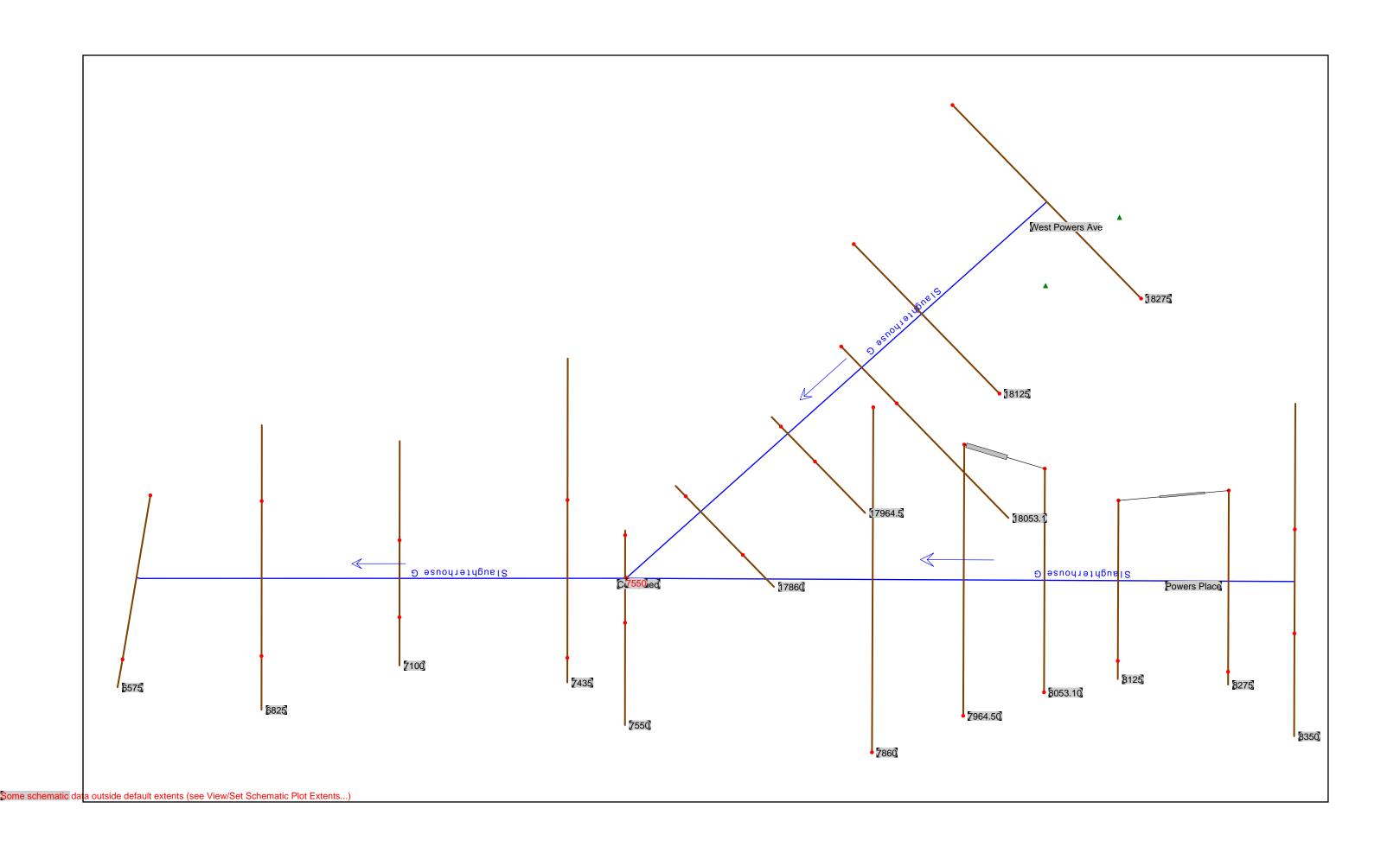
1.	System Elements						
	a. This Levee/Floodwall analysis is based on (check	one):	upgrading of an existing levee/floodwall system		a newly constructed levee/floodwall system		reanalysis of an existing levee/floodwall system
	b. Levee elements and locations are (check one):						
	 earthen embankment, dike, berm, etc. structural floodwall Other (describe): 	Station to Station to Station to	<u> </u>				
	c. Structural Type (check one):	-in place reinforced con	crete 🗌 reinford	ed co	oncrete masonry b	lock	☐ sheet piling
	d. Has this levee/floodwall system been certified by	a Federal agency to pro	ovide protection fro	m the	e base flood?		
	☐ Yes ☐ No						
	If Yes, by which agency?						

	e.	At	tach certified dra	awings containing the follo	owing	information (indic	cate drawing	sheet numbers):						
		1.	Plan of the leve	ee embankment and flood	lwall s	structures.			Sheet N	umbers:	<u></u>			
		2.		levee/floodwall system sh		-								
		3		all crest and foundation, a BFE, closure opening ou				•	Sheet N	umbers:				
		0.		d kind of closure.	lict ai	id illiet illvert elev	rations, type c	11 Id 3120	Sheet N	umbers:				
			•	for the embankment prote			features fou	ndation treatment	Sheet N	umbers:				
		J.	-	cture, closure structures, a			reatures, rou	ndation treatment,	Sheet N	Sheet Numbers:				
2.	<u>F</u> 1	reeb	<u>oard</u>											
		a.	The minimum	freeboard provided above	the E	BFE is:								
		R	iverine											
				at the downstream end an	d thro	oughout				☐ Yes	∏No			
				at the upstream end						☐ Yes	□ No			
		4.	.0 feet within 10	0 feet upstream of all stru	cture	s and/or constricti	ons			☐ Yes	□No			
		<u>C</u>	<u>oastal</u>											
				e height of the one percer levation or maximum wav				ual-chance		☐ Yes	□ No			
		2.	.0 feet above the	e 1%-annual-chance stillw	ater:	surge elevation				☐ Yes	□No			
				asionally exceptions are n ddressing Paragraph 65.1				irement. If an except	tion is req	uested, atta	ch			
		lf	No is answered	I to any of the above, plea	se at	tach an explanation	on.							
	b.	Is	there an indicat	ion from historical records	that	ice-jamming can	affect the BFE		□No					
	If `	Yes,	provide ice-jam	analysis profile and evide	ence 1	hat the minimum	freeboard dis	cussed above still ex	ists.					
3.	<u>C</u>	losu	ı <u>res</u>											
	а	. Or	penings through	the levee system (check	one):	□ e>	kists □ do	es not exist						
			ning exists, list	,	,									
			el Station	Left or Right Bank		Opening	Type	Highest Elevation	on for	Type of	Closure Device			
							.,,,,,	Opening Inve		. , , , ,				
/F.4		1 4 - 1-		d about as useded as	J									
,				d sheet as needed and	rete	erence)								
			technical and	-										
ana	lysis	s for	the following	d detailed analysis repo system features should 1110-2-1906 Form 208	d be									

4.	Em	Embankment Protection												
	a.	The maximum leve	e slope land sid	e is:										
	b.	The maximum leve	e slope flood sid	de is:										
	c.	The range of veloci	ties along the le	evee during th	e base flood is	: (min.)	to	_ (max.)						
	d.	Embankment mate	rial is protected	by (describe	what kind):									
	e.	Riprap Design Para Attach references	ameters (check	one):	☐ Velocity	ПТ	ractive sti	ress						
				Flow		Curve or		Stone	Riprap					
		Reach	Sideslope	Depth	Velocity	Straight	D ₁₀₀	D ₅₀	Thickness	Depth of Toedown				
Sta		to												
Sta		to												
Sta		to												
Sta		to												
Sta		to												
Sta	to													
(Exte	end t	able on an added sh	eet as needed	and reference	e each entry)									
,	f.	Is a bedding/filter a				□ No								
	g.	Describe the analys	-			_	of the de	sign analy	/sis):					
	3.				(9	,,.					
Attac	h er	ngineering analysis to	o support const	ruction plans.										
5.	<u>Em</u>	bankment And Four	dation Stability											
	a.	Identify locations a	and describe the	basis for sel	ection of critica	l location for a	nalysis:							
		Overall height:	Sta.:, he	eight ft.										
		☐ Limiting founda												
		Strength $\phi = $	degrees,	c = ps	f									
		Slope: SS = _	(h) to	(v)										
		(Repeat as ne	eded on an add	ed sheet for a	additional locati	ons)								
	b.	Specify the embar	kment stability	analysis meth	nodology used	(e.g., circular	arc, slidin	g block, ir	nfinite slope, etc.):					
	c.	Summary of stabil	ity analysis resu	ılts:										

E. LEVEE/FLOODWALL (CONTINUED)													
5. <u>Embank</u>	ment And Fo	undation Stability	(continued)										
Case	Loa	ading Conditions		Critica	al Safety	/ Factor		Criteria (Min.)					
I	End of const							1.3					
II	Sudden drav	wdown						1.0					
III	Critical flood	d stage						1.4					
IV	Steady seep	page at flood stag	је					1.4					
VI	Earthquake	(Case I)						1.0					
(Reference: L	JSACE EM-1	110-2-1913 Table	e 6-1)										
d. Was	d. Was a seepage analysis for the embankment performed? ☐ Yes ☐ No												
If Ye	If Yes, describe methodology used:												
e. Was a seepage analysis for the foundation performed? ☐ Yes ☐ No													
f. Wer	re uplift press	ures at the emba	ınkment landside	e toe checked?	☐ Yes	□No							
		xit gradients ched			_ □ Yes	□ No							
_		-		the embankment is _		_							
Allacii e	ngineering ai	nalysis to suppor	t construction pia	ans.									
6. Floodwa	all And Found	lation Stability											
		s submittal based	d on Code (check	k one).	⊐ ubc	C (1988)	Other (specify):						
								-					
		submitted provid				_	explain:						
	_	I in the analyses		Lateral earth @ F	o _A =	psr; P _p =	pst						
		lope @, [surface	_ psf									
	Wind @ P _w =												
	Seepage (Up			quake @ P _{eq} =	%g								
□ 1%-a	annual-chanc	ce significant wav	e height:	ft.									
☐ 1%-a	innual-chance	e significant wave	e period:	sec.									
		ibility Analysis Re range in site lay		of Safety. and loading condition lin	nitation	for each respe	ective reach.						
		Criteria	a (Min)	Sta		То	Sta	То					
Loading Co	ondition	Overturn	Sliding	Overturn	:	Sliding	Overturn	Sliding					
Dead & Wind		1.5	1.5										
Dead & Soil		1.5	1.5										
Dead, Soil, Flo Impact	ood, &	1.5	1.5										
Dead, Soil, &	Seismic	1.3	1.3										

(Ref: FEMA 114 Sept 1986; USACE EM 1110-2-2502) Note: (Extend table on an added sheet as needed and reference)												
E. LEVEE/FLOODWALL (CONTINUED)												
6. Floodwall And Foundation Stability (continued)												
e. Foundation bearing strength for each soil type:												
Bearing Pressure Sustained Load (psf) Short Term Load (psf)												
Computed design maximum												


Maximum allowable

	f.	Foundation scour protection 🗌 is, 🔲 is not provided. If provided, attach explanation and supporting documentation:
		Attach engineering analysis to support construction plans.
7.	<u>Set</u>	<u>ttlement</u>
	a.	Has anticipated potential settlement been determined and incorporated into the specified construction elevations to maintain the established freeboard margin?
	b.	The computed range of settlement is ft. to ft.
	C.	Settlement of the levee crest is determined to be primarily from : Foundation consolidation Embankment compression Other (Describe):
	d.	Differential settlement of floodwalls has has not been accommodated in the structural design and construction.
		Attach engineering analysis to support construction plans.
8.	Inte	erior Drainage
	a.	Specify size of each interior watershed:
		Draining to pressure conduit: acres Draining to ponding area: acres
	b.	Relationships Established
		Ponding elevation vs. storage Yes No No Ponding elevation vs. gravity flow Yes No Differential head vs. gravity flow Yes No
	C.	The river flow duration curve is enclosed: ☐ Yes ☐ No
	d.	Specify the discharge capacity of the head pressure conduit: cfs
	e.	Which flooding conditions were analyzed?
		 Gravity flow (Interior Watershed) Common storm (River Watershed) Historical ponding probability Coastal wave overtopping Yes No No If No for any of the above, attach explanation.
	e.	Interior drainage has been analyzed based on joint probability of interior and exterior flooding and the capacities of pumping and outlet facilities to provide the established level of flood protection. Yes No If No, attach explanation.
	g.	The rate of seepage through the levee system for the base flood is cfs
	h.	The length of levee system used to drive this seepage rate in item g: ft.
		E. LEVEE/FLOODWALL (CONTINUED)
8.	Inte	rior Drainage (continued)
	i.	Will pumping plants be used for interior drainage? ☐ Yes ☐ No
		If Yes, include the number of pumping plants: For each pumping plant, list:

	_		Plant #1	Plant #2										
The r	numl	ber of pumps												
The p	pond	ding storage capacity												
The r	maxi	imum pumping rate												
The r	maxi	imum pumping head												
The p	pum	ping starting elevation												
The p	pum	ping stopping elevation												
Is the	e dis	scharge facility protected?												
Is the	ere a	a flood warning plan?												
How and f		ch time is available between warning ling?												
Will t	he o	operation be automatic?	□Yes	□ No										
If the	; pun	mps are electric, are there backup power	r sources?	□ No										
(Refe	erend	ce: USACE EM-1110-2-3101, 3102, 31	03, 3104, and 3105)											
		a copy of supporting documentation of da vatersheds that result in flooding.	ata and analysis. Provide a map showing the floods	ed area and maximum ponding elevations for all										
9.	<u>Oth</u>	ner Design Criteria												
	a.	The following items have been address	sed as stated:											
	 a. The following items have been addressed as stated: Liquefaction ☐ is ☐ is not a problem Hydrocompaction ☐ is ☐ is not a problem Heave differential movement due to soils of high shrink/swell ☐ is ☐ is not a problem 													
	b.	For each of these problems, state the b	pasic facts and corrective action taken:											
		Attach supporting documentation												
	c.		d, will the structure adversely impact flood levels an supporting documentation	nd/or flow velocities floodside of the structure?										
	d.	Sediment Transport Considerations:												
10.	<u>Op</u>	Was sediment transport considered? If Yes, then fill out Section F (Sedimen rerational Plan And Criteria	☐ Yes ☐ No nt Transport). If No, then attach your explanation fo	or why sediment transport was not considered.										
	a.	Are the planned/installed works in full	compliance with Part 65.10 of the NFIP Regulations	s?										
	b.	Does the operation plan incorporate al ☐ Yes ☐ No	II the provisions for closure devices as required in F	Paragraph 65.10(c)(1) of the NFIP regulations?										
	_		he provisions for interior drainage as required in Pa to any of the above, please attach supporting docu											
			E. LEVEE/FLOODWALL (CONTINUED)											

11. Maintenance Plan											
Please attach a copy of the fomal maintenance plan for the levee/floodwall											
12. Operations and Maintenance Plan											
Please attach a copy of the formal Operations and Maintenance Plan for the levee/floodwall.											
CERTIFICATION OF THE LEVEE DOCUMENTION											
This certification is to be signed and sealed by a licensed registered professional engineer authorized by law to certify elevation information data, hydrologic and hydraulic analysis, and any other supporting information as per NFIP regulations paragraph 65.10(e) and as described in the MT-2 Forms Instructions. All documents submitted in support of this request are correct to the best of my knowledge. I understand that any false statement may be punishable by fine or imprisonment under Title 18 of the United States Code, Section 1001.											
Certifier's Name: License No.: Expiration Date:											
Company Name: Telephone No.: Fax No.:											
Signature: Date: E-Mail Address:											
F. SEDIMENT TRANSPORT											
Flooding Source:											
Name of Structure:											
If there is any indication from historical records that sediment transport (including scour and deposition) can affect the Base Flood Elevation (BFE); and/or based on the stream morphology, vegetative cover, development of the watershed and bank conditions, there is a potential for debris and sediment transport (including scour and deposition) to affect the BFEs, then provide the following information along with the supporting documentation:											
Sediment load associated with the base flood discharge: Volume acre-feet											
Debris load associated with the base flood discharge: Volume acre-feet											
Sediment transport rate (percent concentration by volume)											
Method used to estimate sediment transport:											
Most sediment transport formulas are intended for a range of hydraulic conditions and sediment sizes; attach a detailed explanation for using the selected method.											
Method used to estimate scour and/or deposition:											
Method used to revise hydraulic or hydrologic analysis (model) to account for sediment transport:											
Please note that bulked flows are used to evaluate the performance of a structure during the base flood; however, FEMA does not map BFEs based on bulked flows.											
If a sediment analysis has not been performed, an explanation as to why sediment transport (including scour and deposition) will not affect the BFEs or structures must be provided.											
The floodplain being analyzed is in a highly developed area with nearly all of the ground surface being paved, with little chance for erosion.											

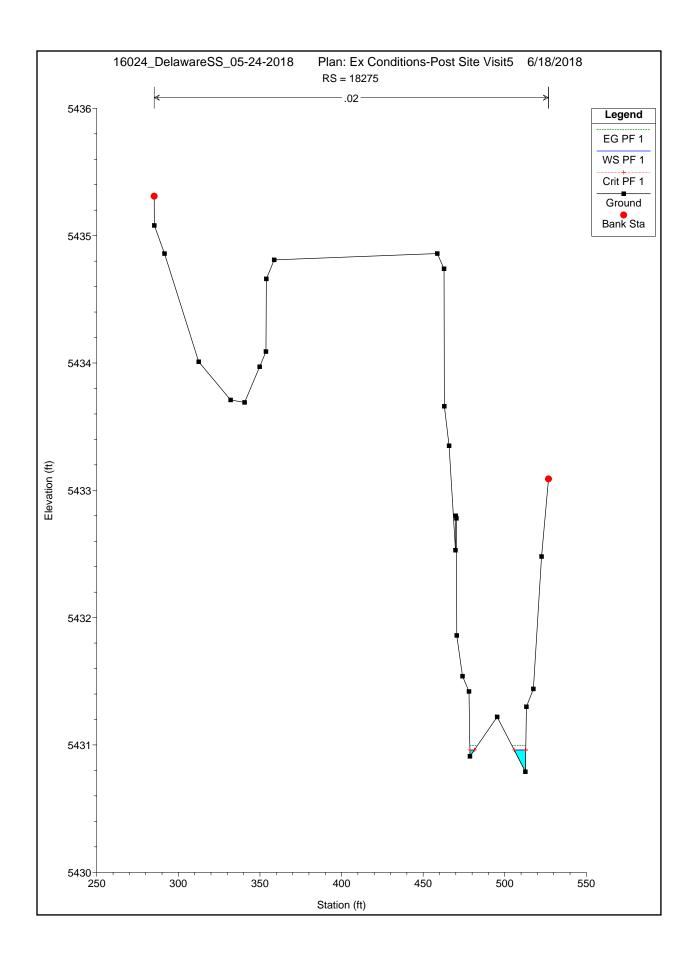
Appendix C –Hydraulic Calculations

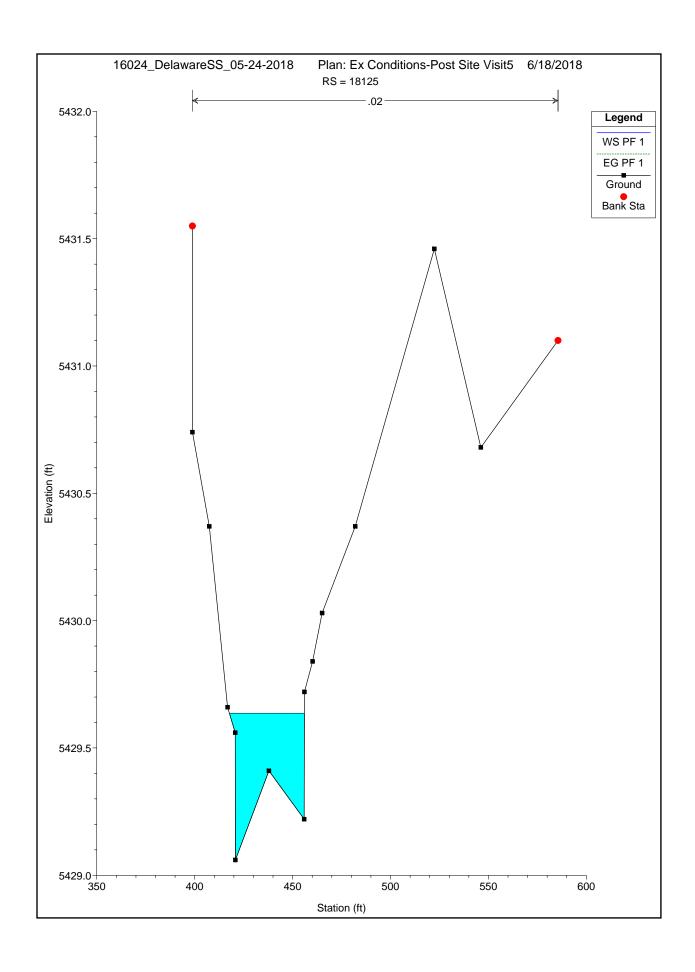
UDFCD DLOMC Submittal - BFE Comparison Table

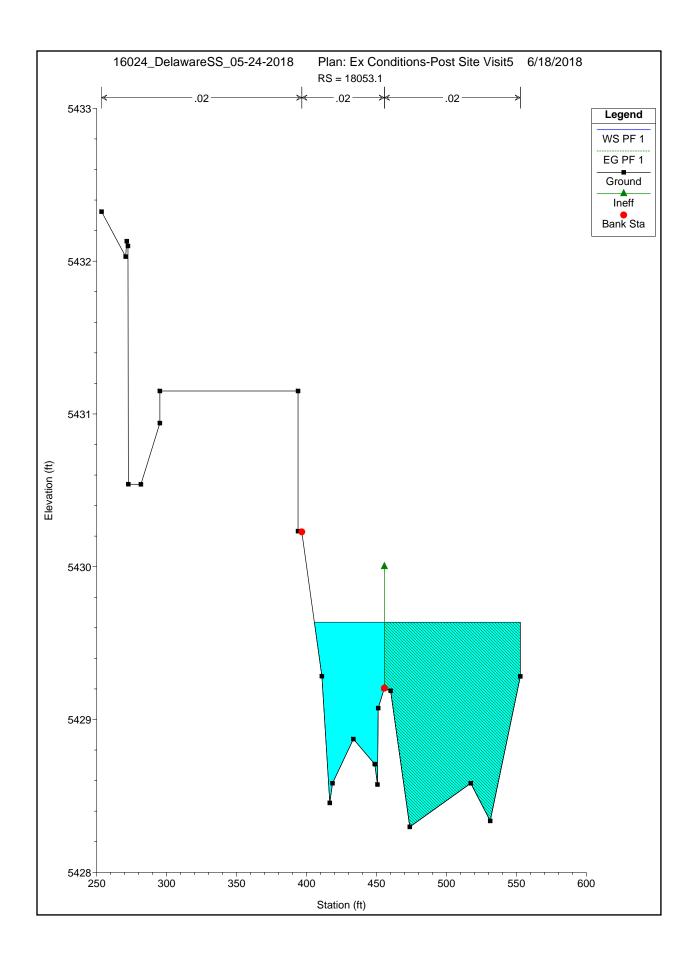
Project Name :	Delaware and Powers
Flooding Source:	Slaughterhouse Gulch
Company:	Redland
Completed By:	Steve Pangburn, P.E.

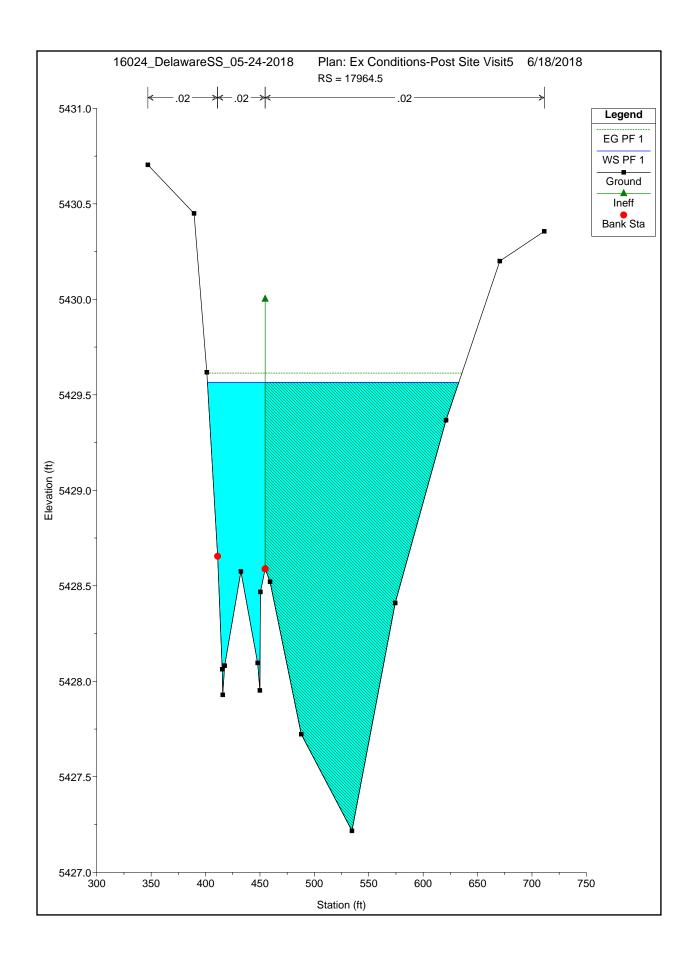
				SC	DURCE D	ATA					COMPARISONS						
	HYDRAUL	IC CROSS-S	ECTION	NFO.		В	ASE FLOO	D ELEVAT	IONS (NAV	D)	COMPARISONS						
		Corrected Effective Stream	Existing Cross-	Proposed Cross-	Proposed Stream	EFFECTIVE		COR. EFF.*		PROPOSED	DUP. EFF vs. EFF.	COR. EFF.	EX. vs. EFF.*	PP. vs. COR. EFF.	PP. vs. EFF.		
ID (Letter)	Section ID	Station	Section ID	Section ID	Station	BFE	BFE	BFE	BFE	BFE	BFE	BFE	BFE	BFE	BFE		
	Powers Place																
L	74+35	74+35	L	L	74+35	5426.72	5426.58	-	5425.75	5425.75	-0.14	-	-0.97	-	-0.97		
	75+50	75+50			75+50	5428.9	5428.91	-	5428.59	5428.59	0.01	-	-0.31	-	-0.31		
	78+60	78+60			78+60	5431.68	5430.1	-	5430.86	5430.86	-1.58	-	-0.82	-	-0.82		
	79+64.5	79+64.5			79+64.5	<i>54</i> 32.1	5430.14	-	5431.7	5431.7	-1.96	-	-0.40	-	-0.40		
	80+53.1	80+53.1			80+53.1	5432.6	5430.18	-	5432.12	5432.12	-2.42	-	-0.48	-	-0.48		
	81+25	81+25			81+25	5432.84	5430.21	-	5432.63	5432.63	-2.63	-	-0.21	-	-0.21		
	82+75	82+75			82+75	5434.57	5430.21	-	5433.69	5433.69	-4.36	-	-0.88	-	-0.88		
	83+50	83+50			83+50	5434.96	5434.67	-	5434.2	5434.2	-0.29	-	-0.76	-	-0.76		
	West Powers Ave	•															
	182+75	182+75			182+75	-	-	-	5430.96	5430.96	-	-	-	-	-		
	181+25	181+25			181+25	-	-	-	5429.64	5429.63	-	-	-	-	-		
	18053.1	18053.1			18053.1	-	-	-	5429.64	5429.63	-	-	-	-	-		
	17964.5	17964.5			17964.5	-	-	-	5429.57	5429.56	-	-	-	-	-		
	17860	17860			17860	-	-	-	5429.56	5429.56	-	-	-	-	-		
								1									

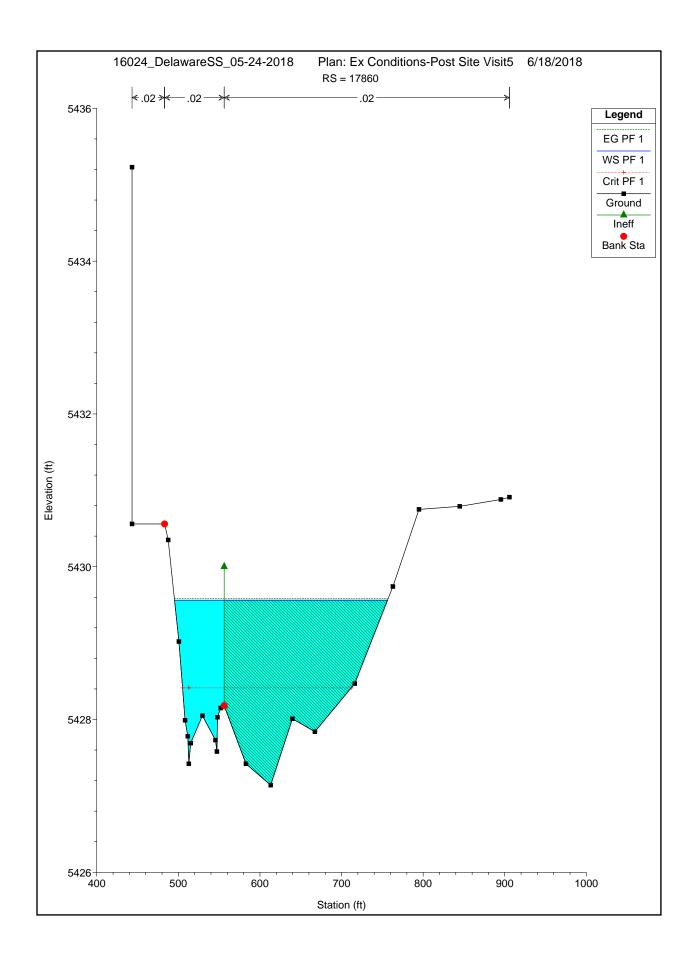
-- = Not applicable or no direct comparison available

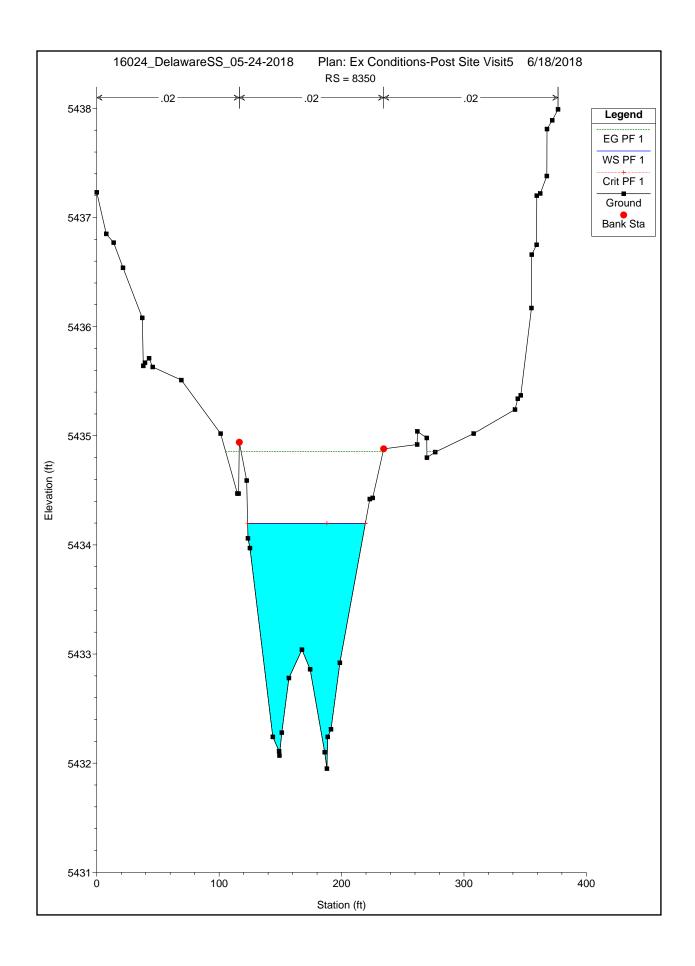

5432.1 = Interpolated value or value pulled directly from the effective FIS profile

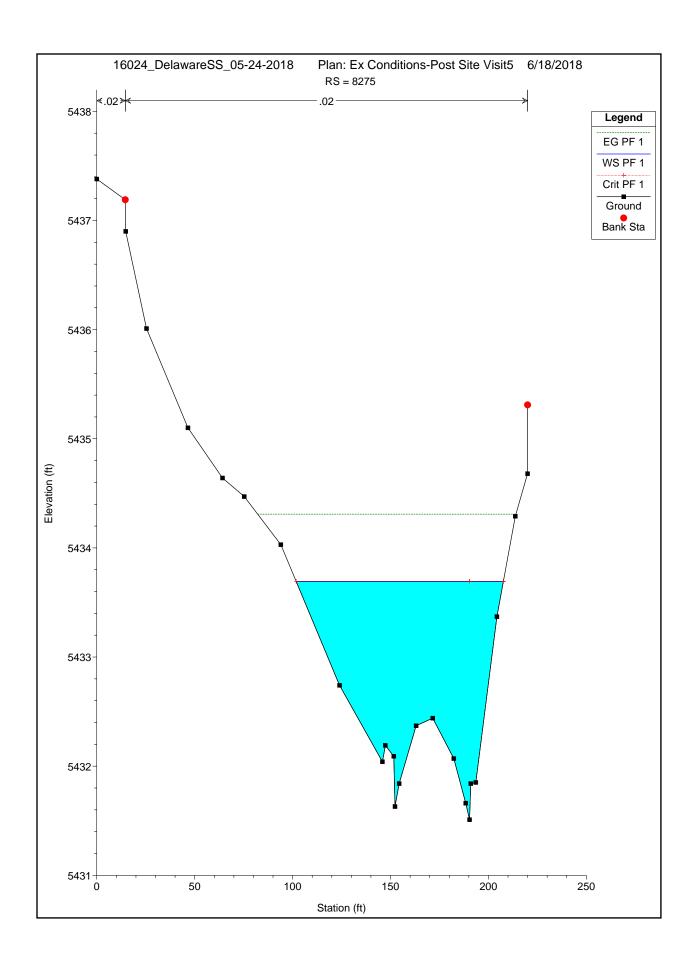

HEC-RAS Plan: Existing Con5 Profile: PF 1

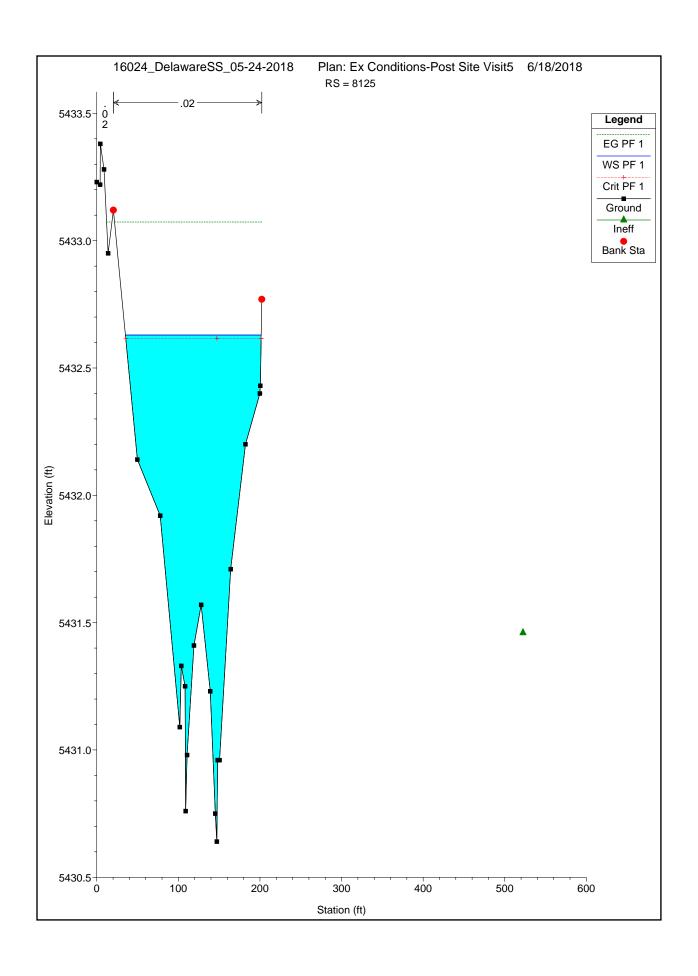

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
West Powers Ave	18275	PF 1	1.00	5430.79	5430.96	5430.96	5431.00	0.014312	1.48	0.68	9.87	1.00
West Powers Ave	18125	PF 1	1.00	5429.06	5429.64		5429.64	0.000005	0.08	12.81	38.28	0.02
West Powers Ave	18053.1	PF 1	1.00	5428.45	5429.64		5429.64	0.000000	0.03	38.47	147.25	0.01
West Powers Ave	17964.5	PF 1	100.79	5427.93	5429.57		5429.61	0.000433	1.78	58.65	231.14	0.28
West Powers Ave	17860	PF 1	100.79	5427.42	5429.56	5428.41	5429.58	0.000138	1.13	89.58	261.04	0.16
Powers Place	8350	PF 1	800.00	5431.95	5434.20	5434.20	5434.86	0.005567	6.51	122.84	96.17	1.02
Powers Place	8275	PF 1	800.00	5431.51	5433.69	5433.69	5434.31	0.005663	6.30	127.03	105.82	1.01
Powers Place	8247.50		Lat Struct									
Powers Place	8125	PF 1	810.00	5430.64	5432.63	5432.62	5433.07	0.005872	5.34	151.61	166.43	0.99
Powers Place	8053.10	PF 1	810.00	5430.19	5432.12	5432.12	5432.56	0.006302	5.37	150.80	173.07	1.01
Powers Place	8010.05		Lat Struct									
Powers Place	7964.50	PF 1	710.21	5429.73	5431.70		5431.82	0.001270	2.87	247.35	217.76	0.47
Powers Place	7860	PF 1	720.21	5428.50	5430.86	5430.86	5431.52	0.006080	6.52	110.42	86.04	1.02
Combined	7550	PF 1	830.00	5426.04	5428.59	5428.59	5429.30	0.003046	6.75	122.94	87.86	1.01
Combined	7435	PF 1	840.00	5422.63	5425.75	5425.06	5425.96	0.001044	3.68	228.20	184.49	0.58
Combined	7100	PF 1	840.00	5423.26	5424.90	5424.90	5425.33	0.003634	5.90	172.62	206.20	1.05
Combined	6825	PF 1	1130.00	5405.94	5415.61		5415.62	0.000003	0.64	1772.38	244.78	0.04
Combined	6575	PF 1	1130.00	5413.03	5414.96	5414.96	5415.56	0.003133	6.21	182.02	153.51	1.01

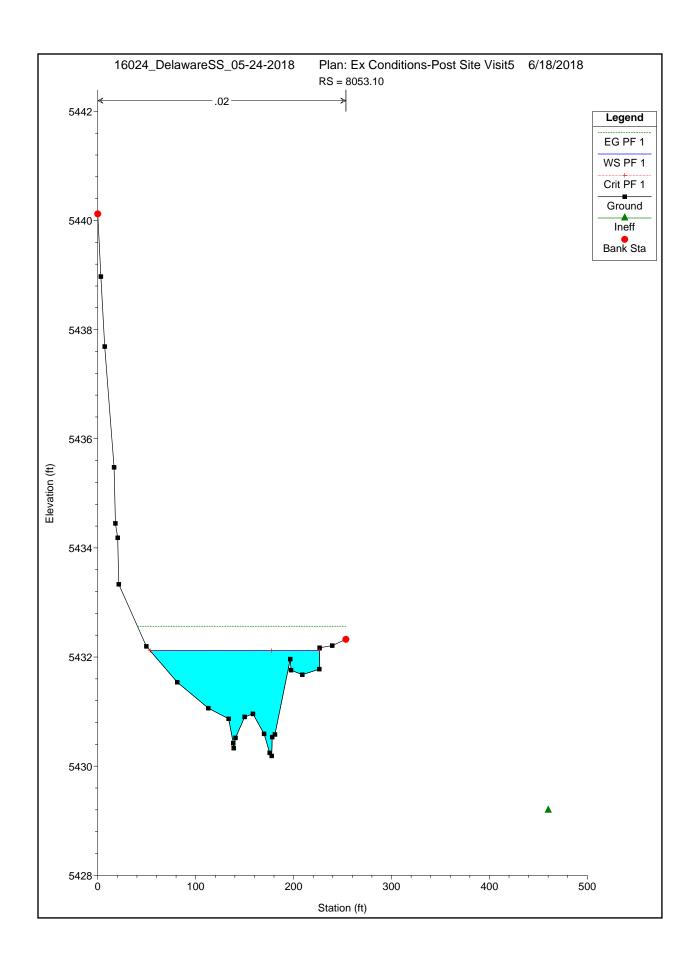

HEC-RAS Plan: Existing Con5 Profile: PF 1

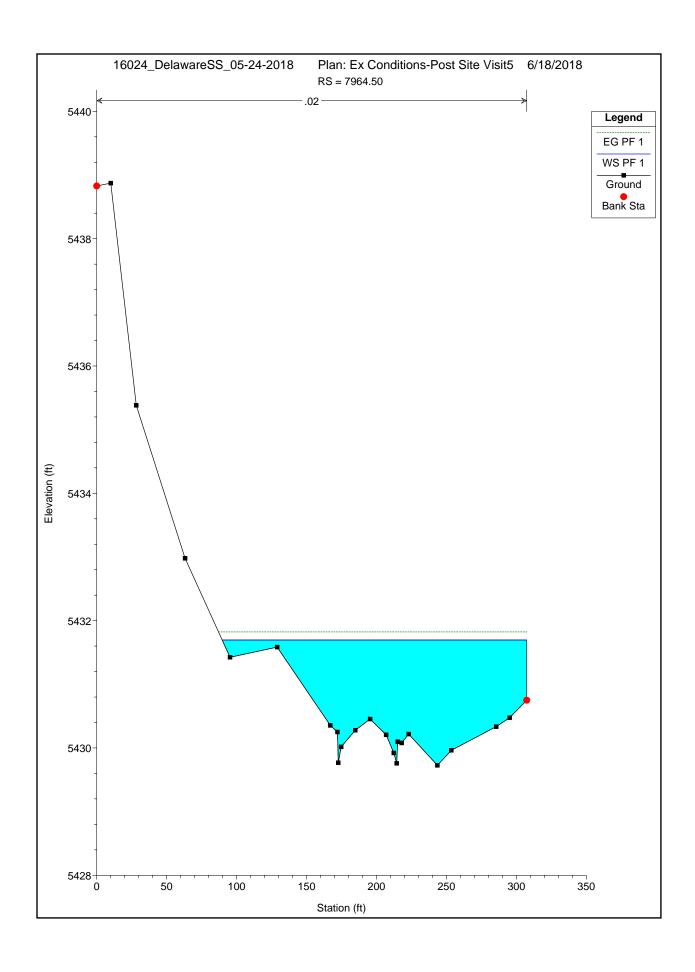

Reach	River Sta	Profile	Q US	Q Leaving Total	Q DS	Q Weir	Q Gates	Wr Top Wdth	Weir Max Depth	Weir Avg Depth	Min El Weir Flow	E.G. US.	W.S. US.	E.G. DS	W.S. DS
			(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
Powers Place	8247.50	PF 1	800.00	0.00	810.00	0.00					5433.20	5434.04	5433.46	5433.53	5433.03
Powers Place	8010.05	PF 1	810.00	101.04	710.21	101.04		46.00	1.52	1.28	5430.30	5432.22	5431.92	5431.84	5431.71

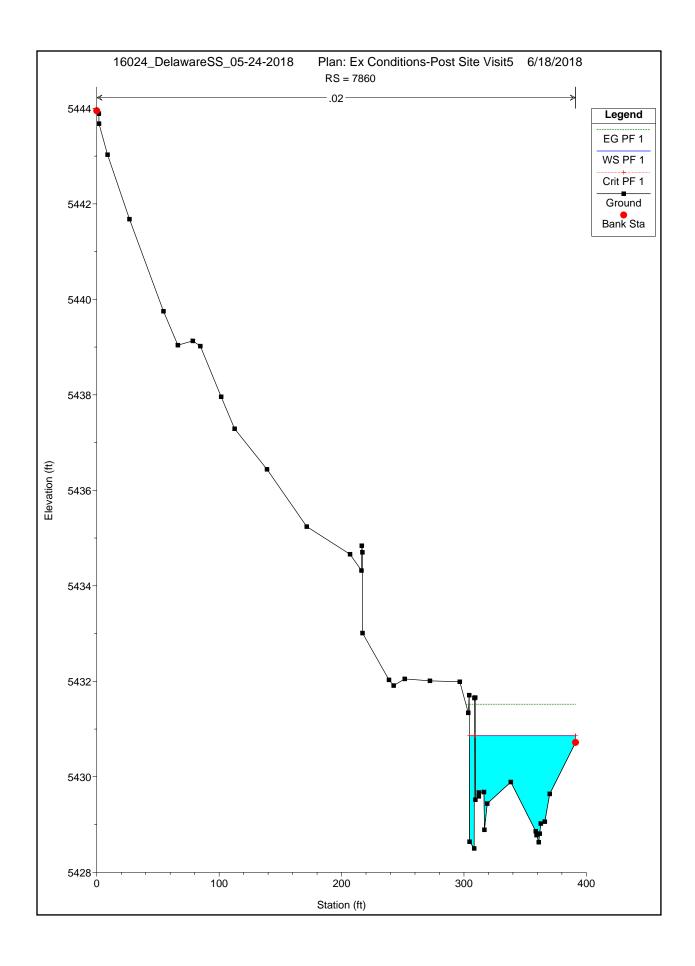


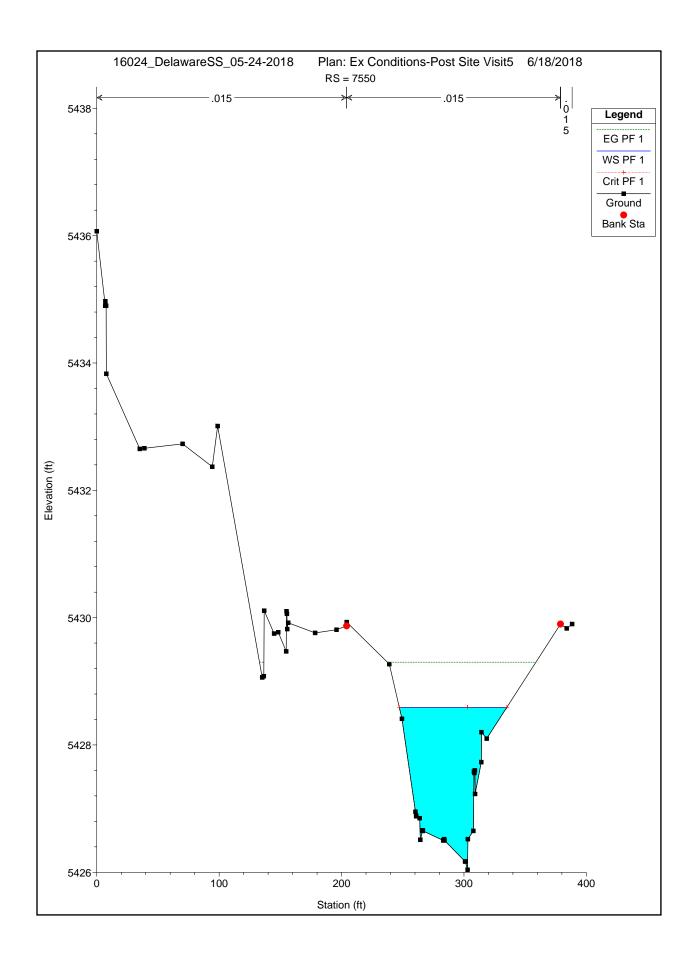


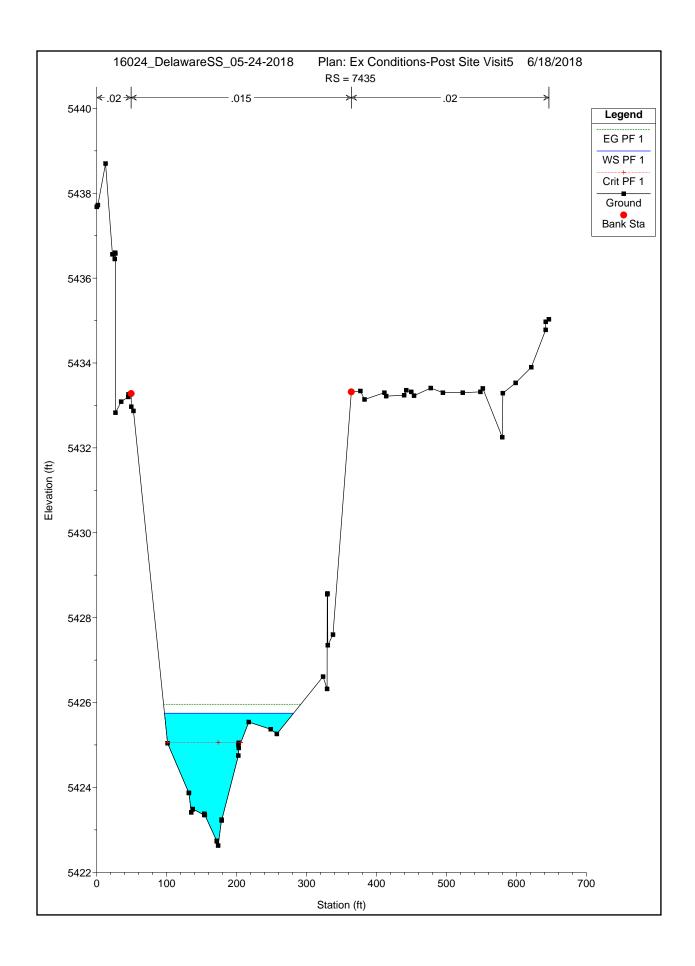


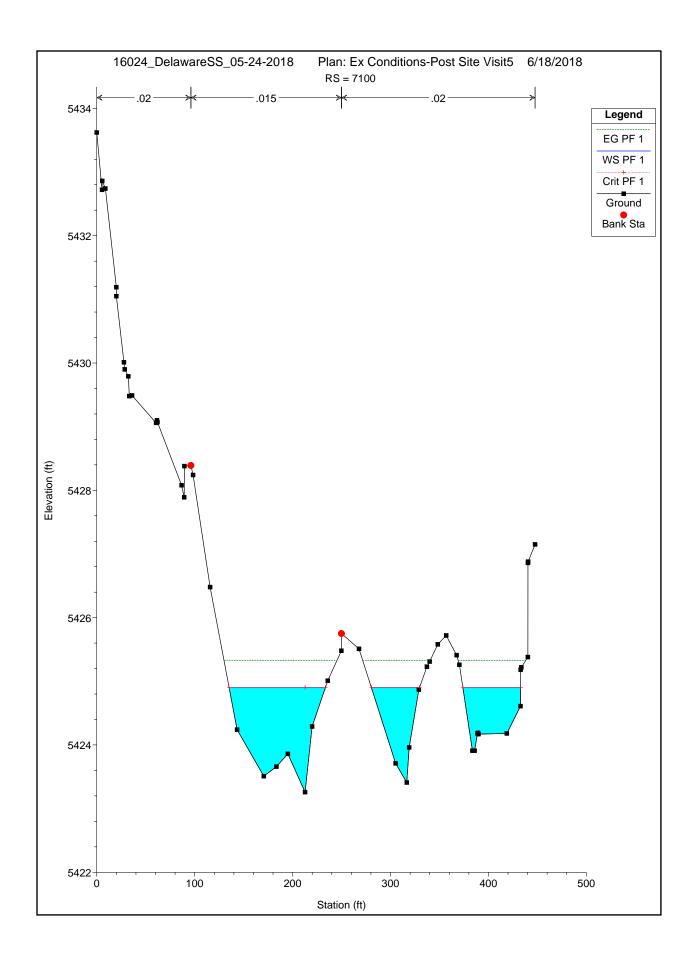


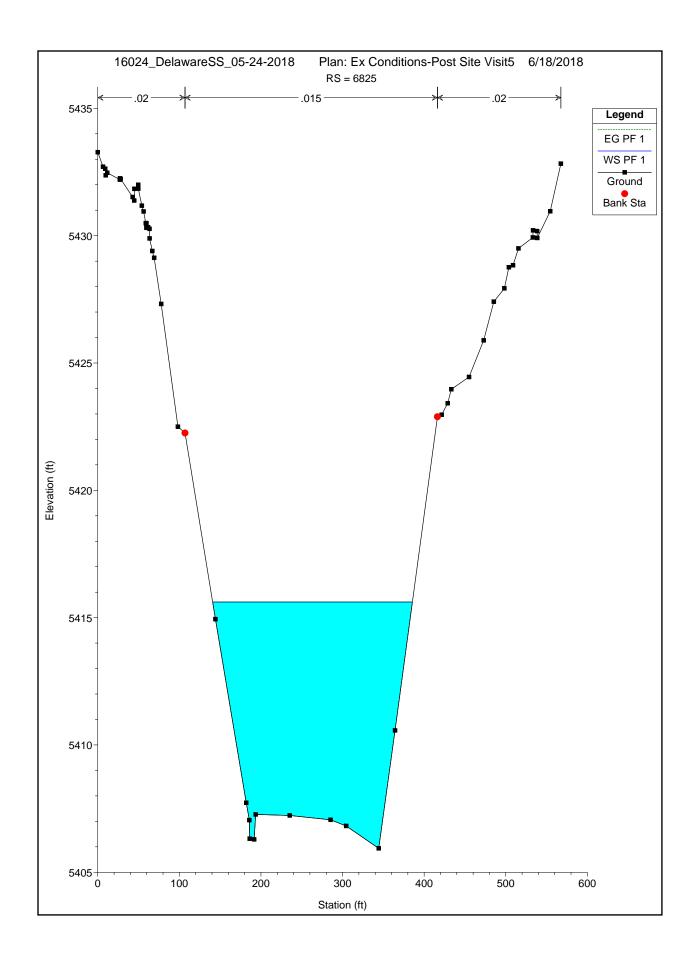


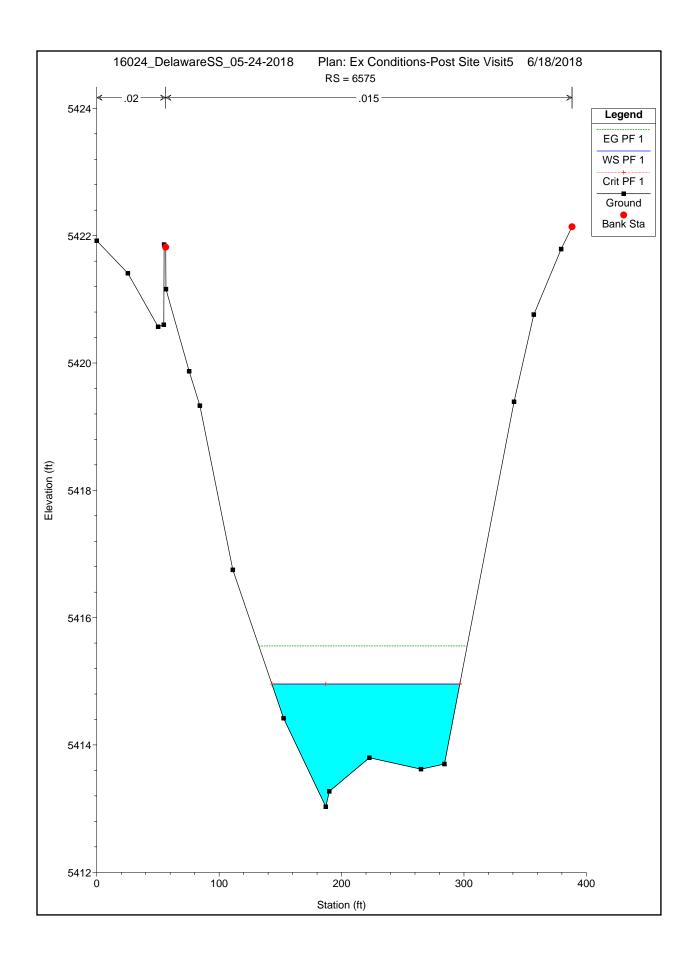


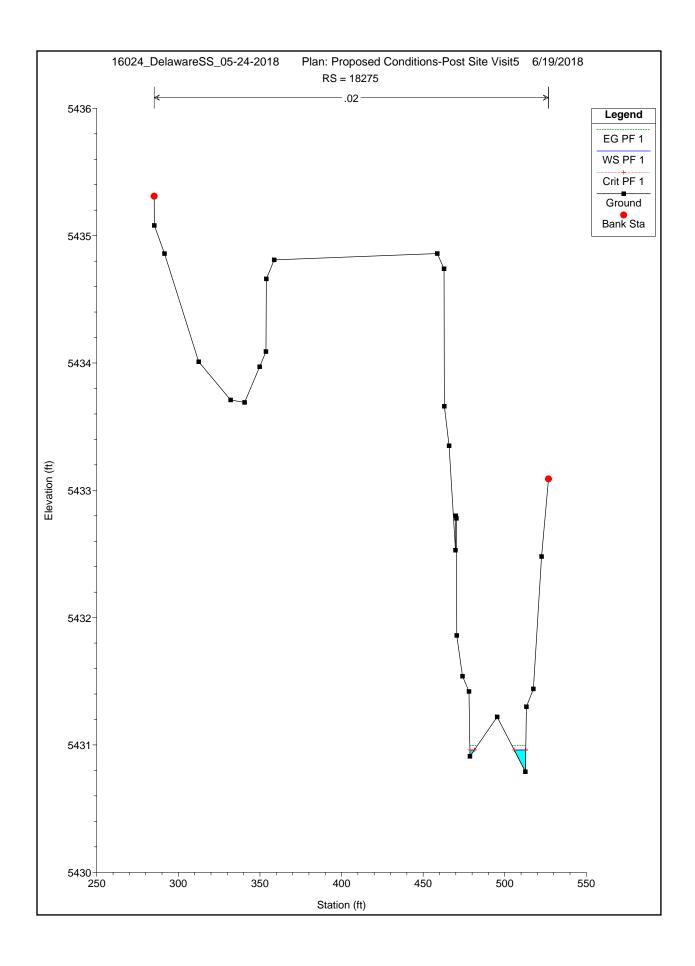


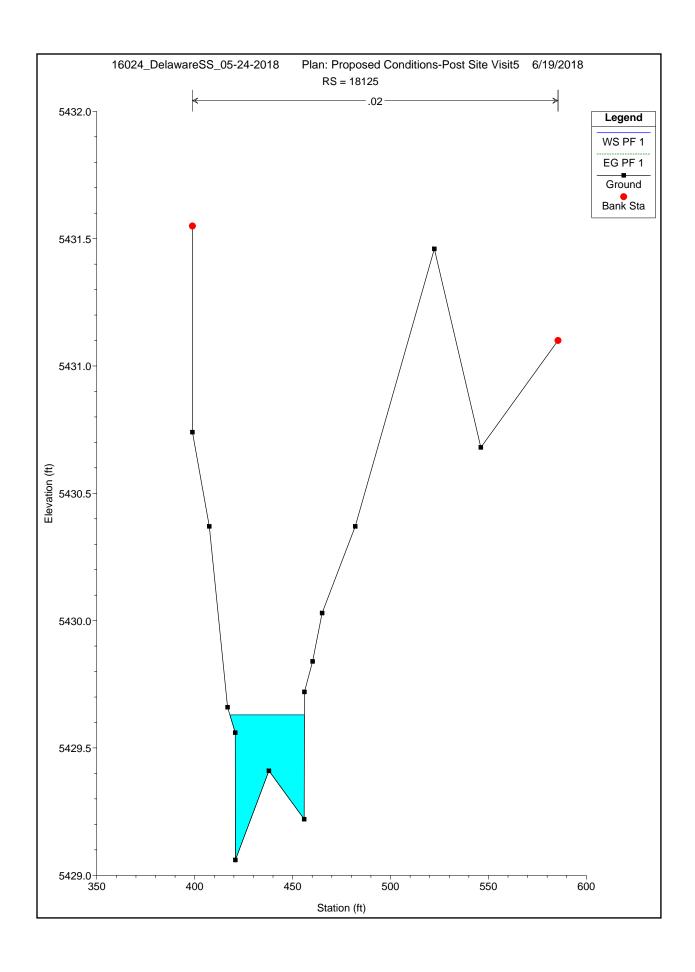


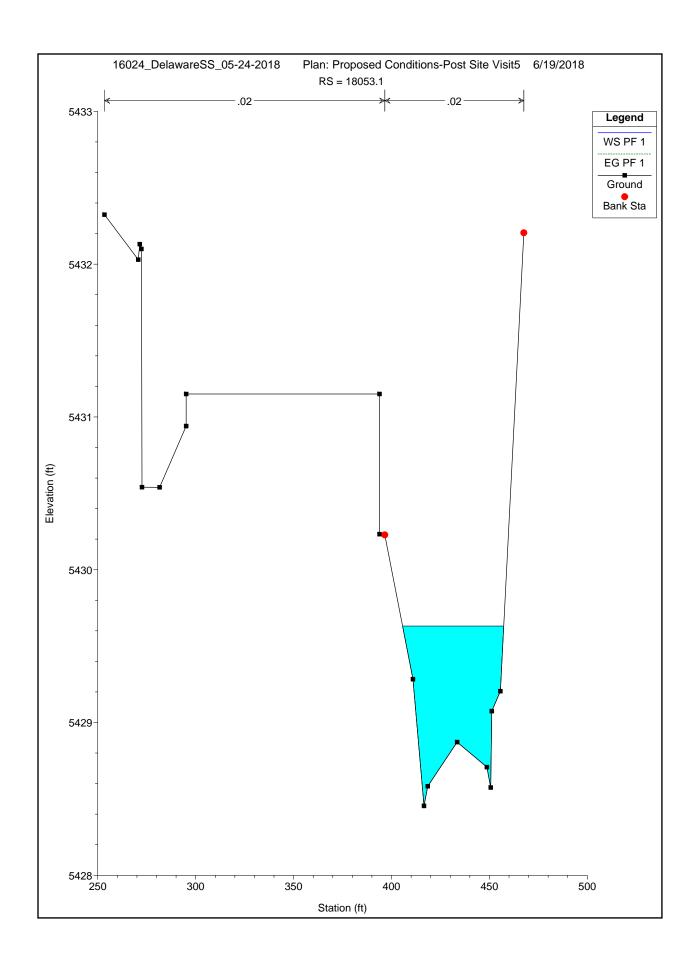


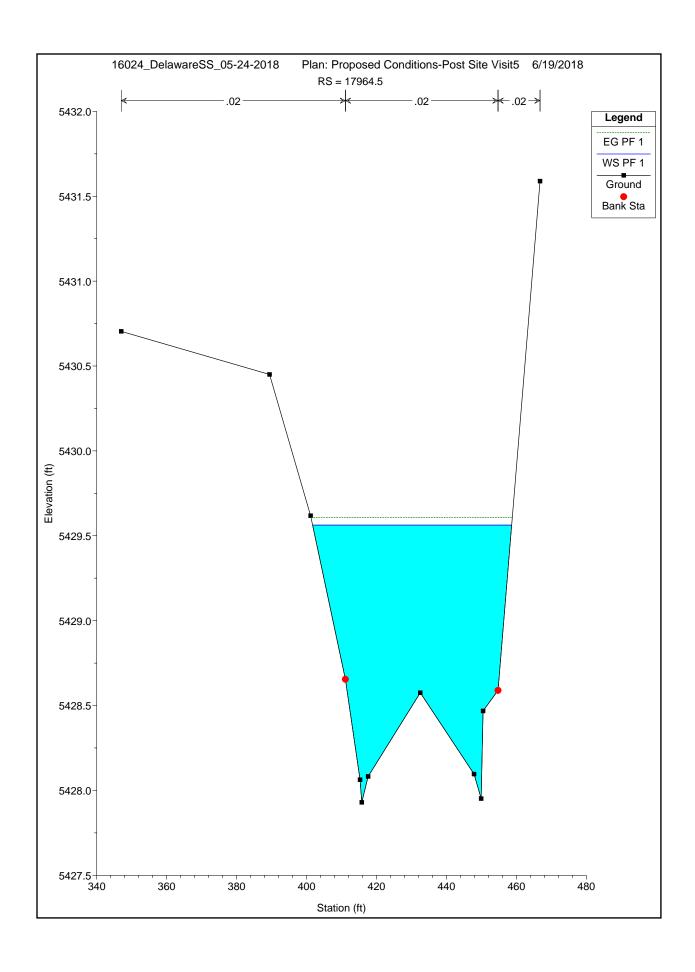


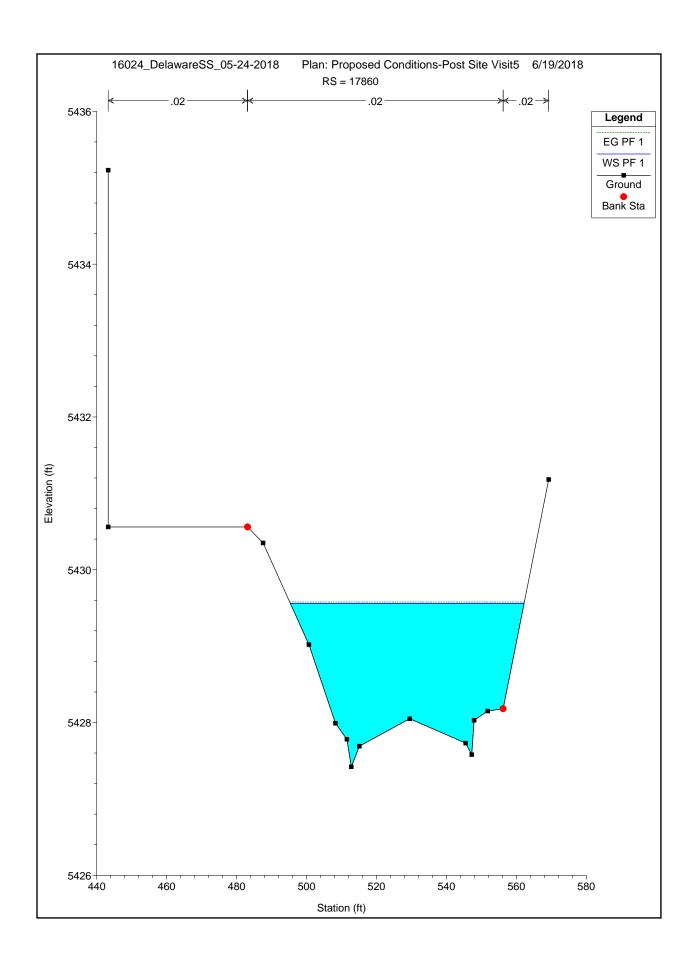


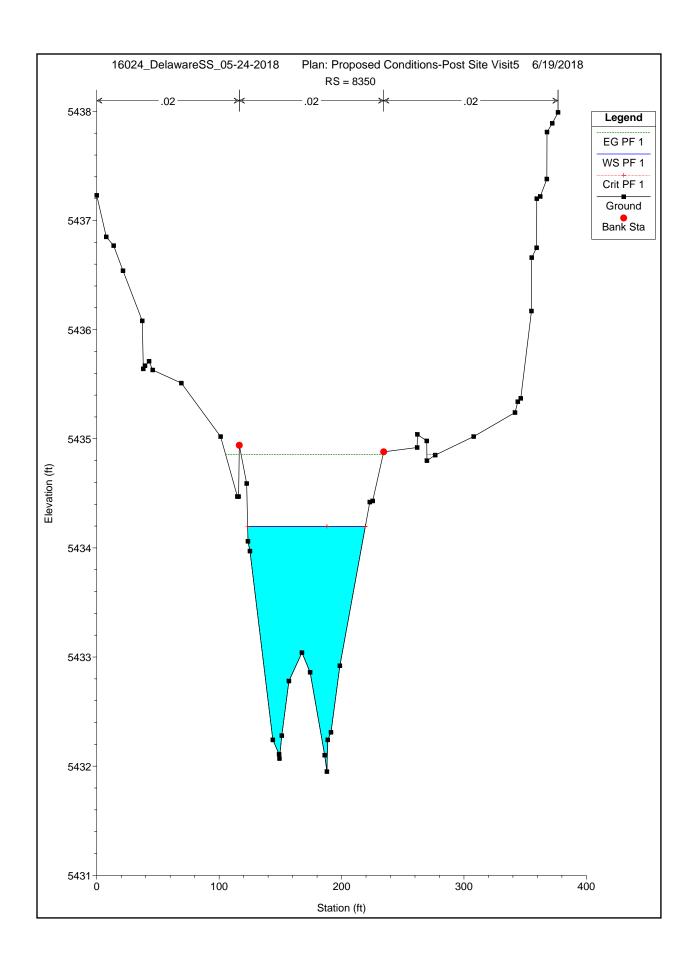


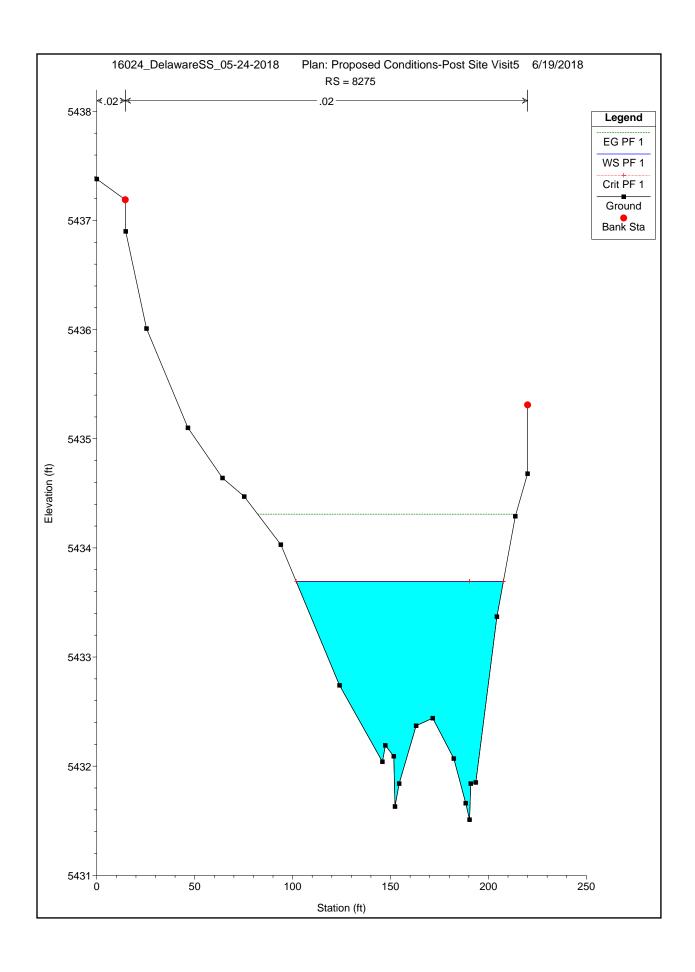

HEC-RAS Plan: Proposed Cond 5 Profile: PF 1

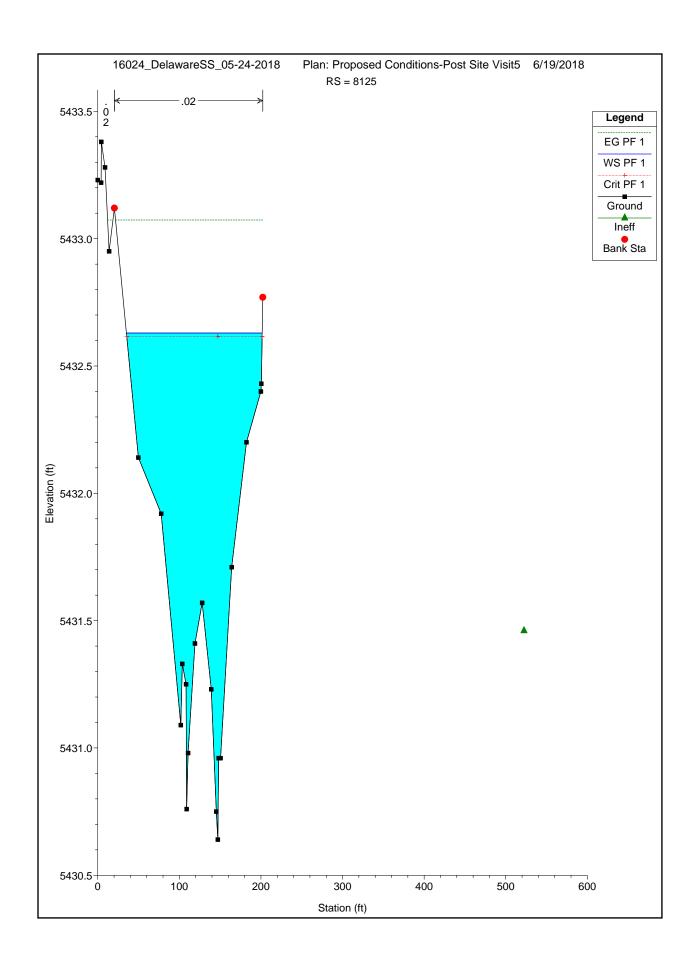

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
West Powers Ave	18275	PF 1	1.00	5430.79	5430.96	5430.96	5431.00	0.014312	1.48	0.68	9.87	1.00
West Powers Ave	18125	PF 1	1.00	5429.06	5429.63		5429.63	0.000005	0.08	12.59	38.05	0.02
West Powers Ave	18053.1	PF 1	1.00	5428.45	5429.63		5429.63	0.000000	0.03	38.54	51.62	0.01
West Powers Ave	17964.5	PF 1	100.80	5427.93	5429.56		5429.61	0.000422	1.76	60.37	56.93	0.28
West Powers Ave	17860	PF 1	100.80	5427.42	5429.56		5429.58	0.000132	1.10	93.52	66.84	0.16
Powers Place	8350	PF 1	800.00	5431.95	5434.20	5434.20	5434.86	0.005567	6.51	122.84	96.17	1.02
Powers Place	8275	PF 1	800.00	5431.51	5433.69	5433.69	5434.31	0.005663	6.30	127.03	105.82	1.01
Powers Place	8247.50		Lat Struct									
Powers Place	8125	PF 1	810.00	5430.64	5432.63	5432.62	5433.07	0.005872	5.34	151.61	166.43	0.99
Powers Place	8053.10	PF 1	810.00	5430.19	5432.12	5432.12	5432.56	0.006302	5.37	150.80	173.07	1.01
Powers Place	8010.05		Lat Struct									
Powers Place	7964.50	PF 1	710.20	5429.73	5431.70		5431.82	0.001272	2.87	247.25	217.75	0.48
Powers Place	7860	PF 1	720.20	5428.50	5430.86	5430.86	5431.52	0.006050	6.51	110.59	86.04	1.01
Combined	7550	PF 1	830.00	5426.04	5428.59	5428.59	5429.30	0.003046	6.75	122.94	87.86	1.01
Combined	7435	PF 1	840.00	5422.63	5425.75	5425.06	5425.96	0.001044	3.68	228.20	184.49	0.58
Combined	7100	PF 1	840.00	5423.26	5424.90	5424.90	5425.33	0.003634	5.90	172.62	206.20	1.05
Combined	6825	PF 1	1130.00	5405.94	5415.61		5415.62	0.000003	0.64	1772.38	244.78	0.04
Combined	6575	PF 1	1130.00	5413.03	5414.96	5414.96	5415.56	0.003133	6.21	182.02	153.51	1.01

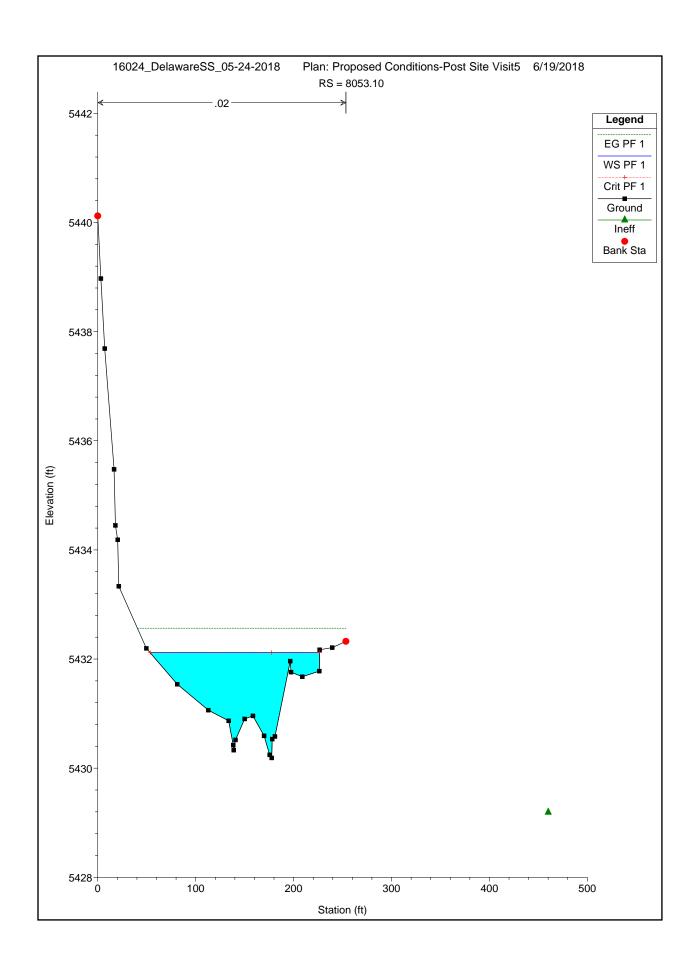

HEC-RAS Plan: Proposed Cond 5 Profile: PF 1

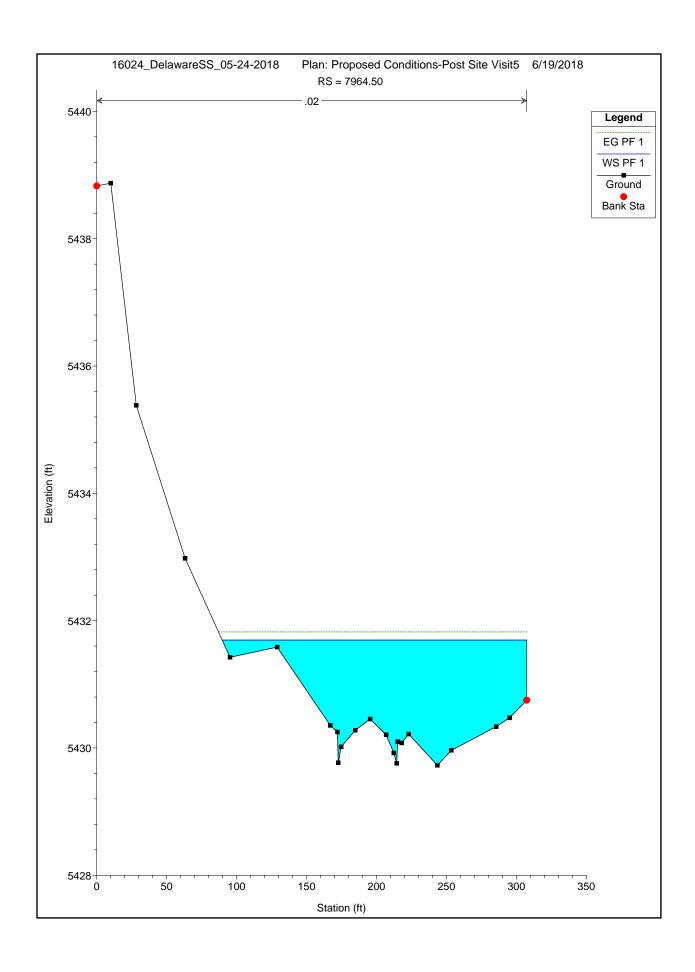

Reach	River Sta	Profile	Q US	Q Leaving Total	Q DS	Q Weir	Q Gates	Wr Top Wdth	Weir Max Depth	Weir Avg Depth	Min El Weir Flow	E.G. US.	W.S. US.	E.G. DS	W.S. DS
			(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
Powers Place	8247.50	PF 1	800.00	0.08	810.00	0.08		6.89	0.07	0.04	5433.05	5434.04	5433.46	5433.53	5433.03
Powers Place	8010.05	PF 1	810.00	101.03	710.20	101.03		46.00	1.52	1.28	5430.30	5432.22	5431.92	5431.84	5431.71

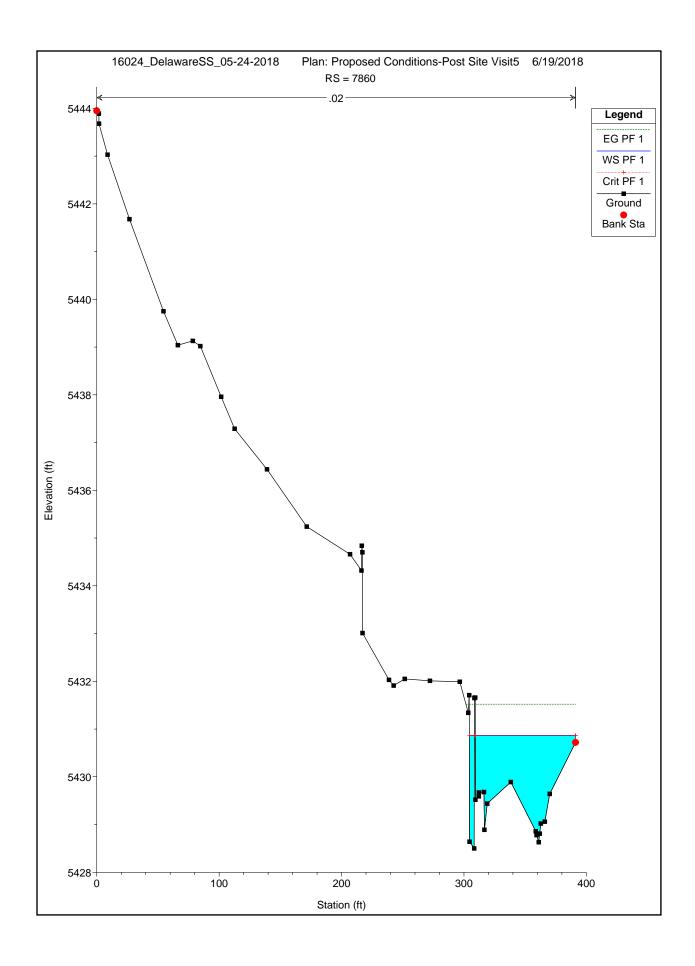


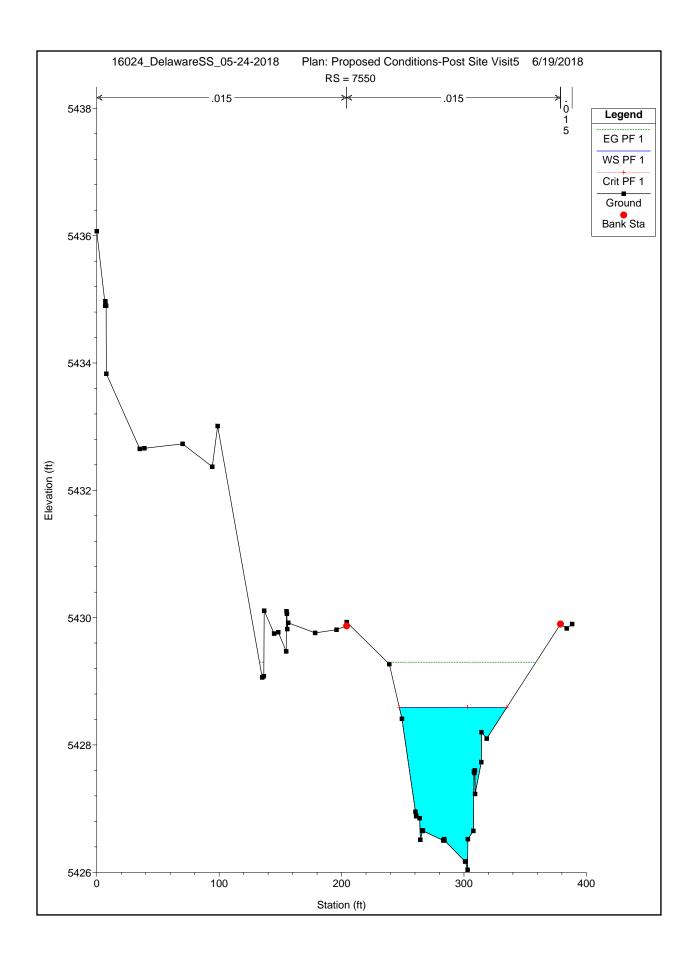


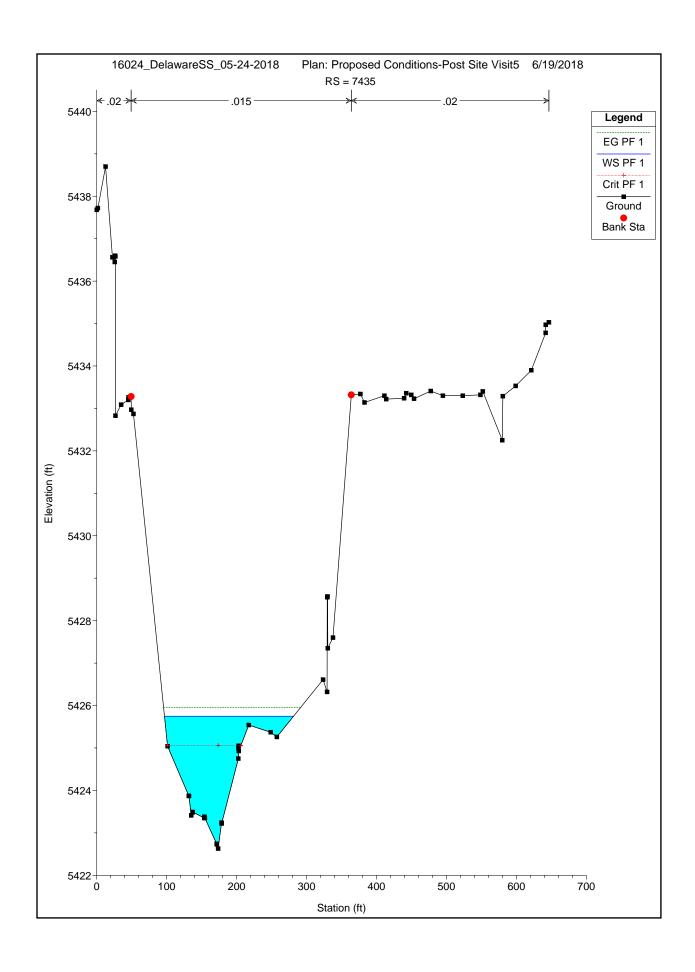


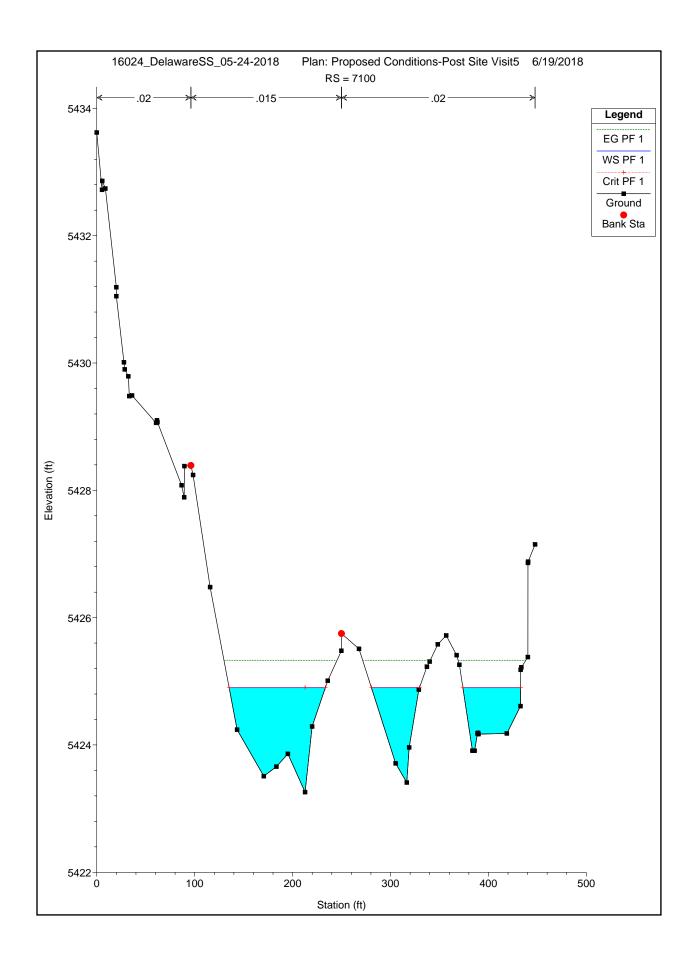


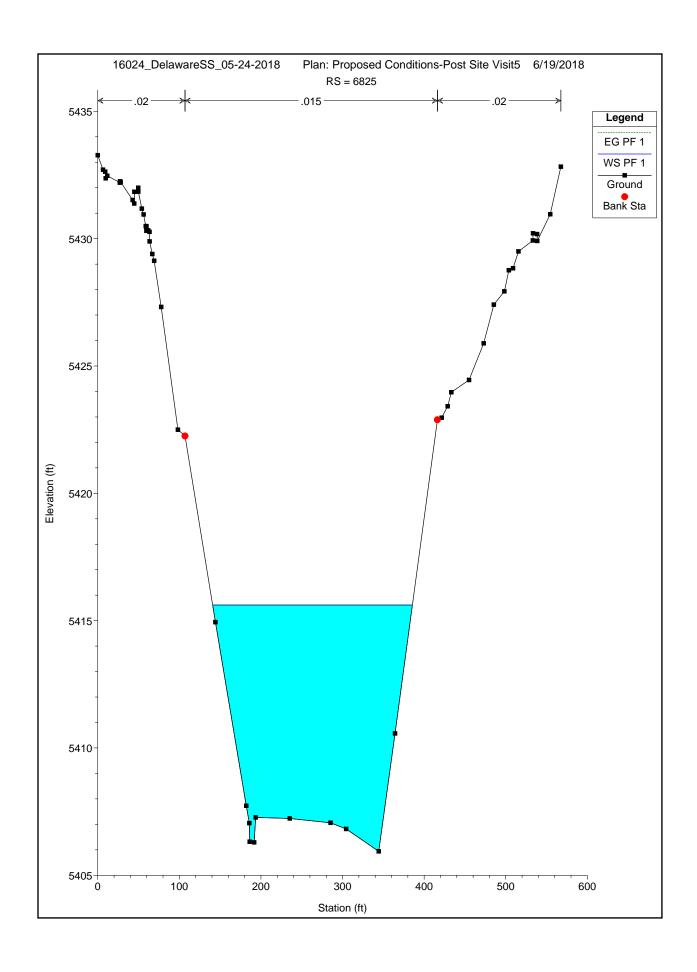


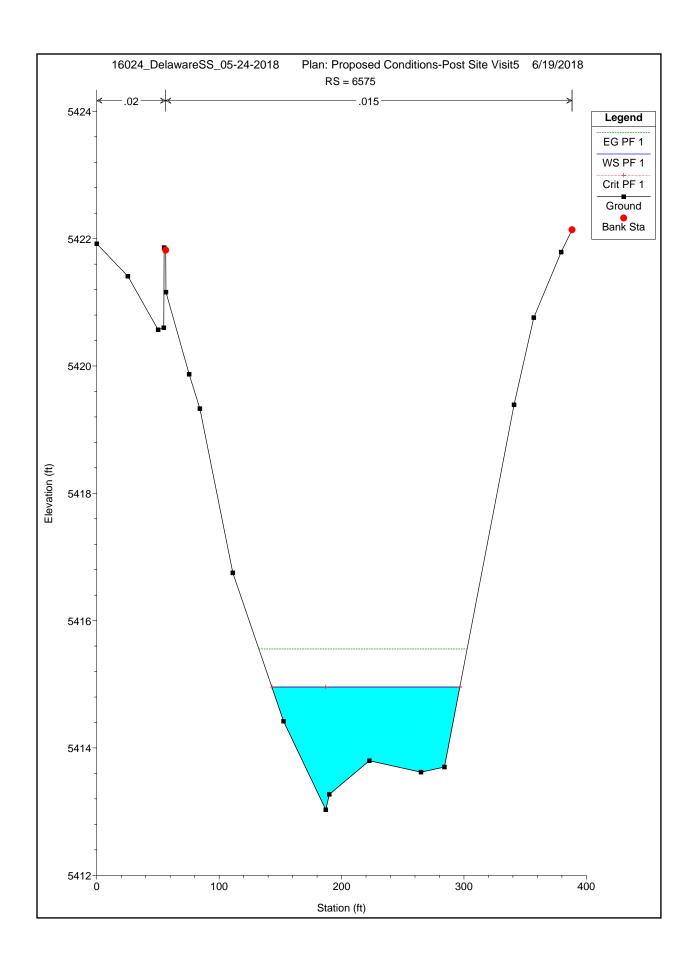


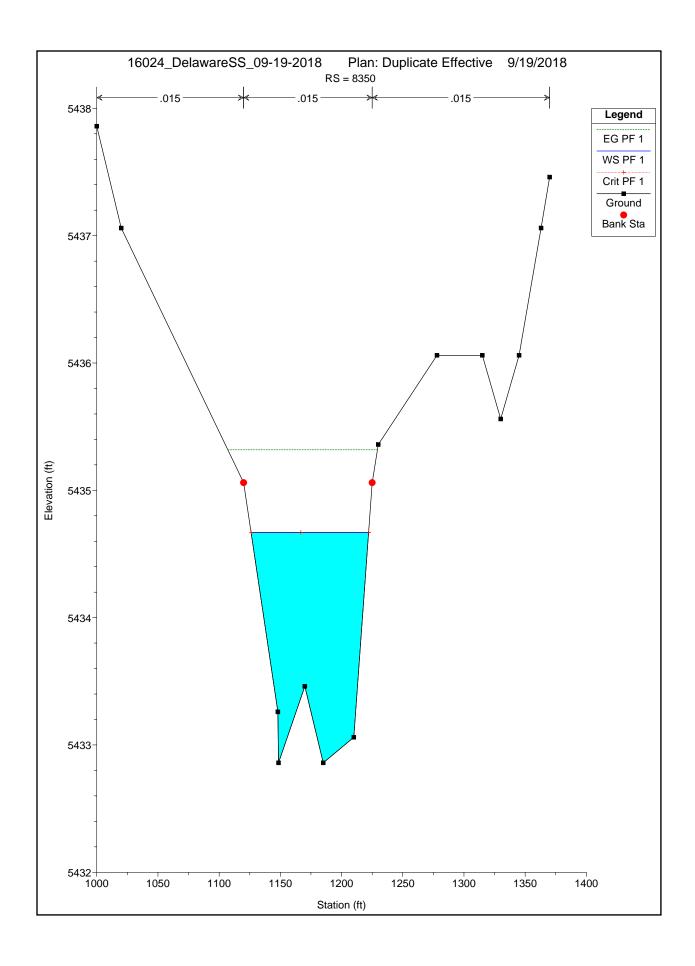


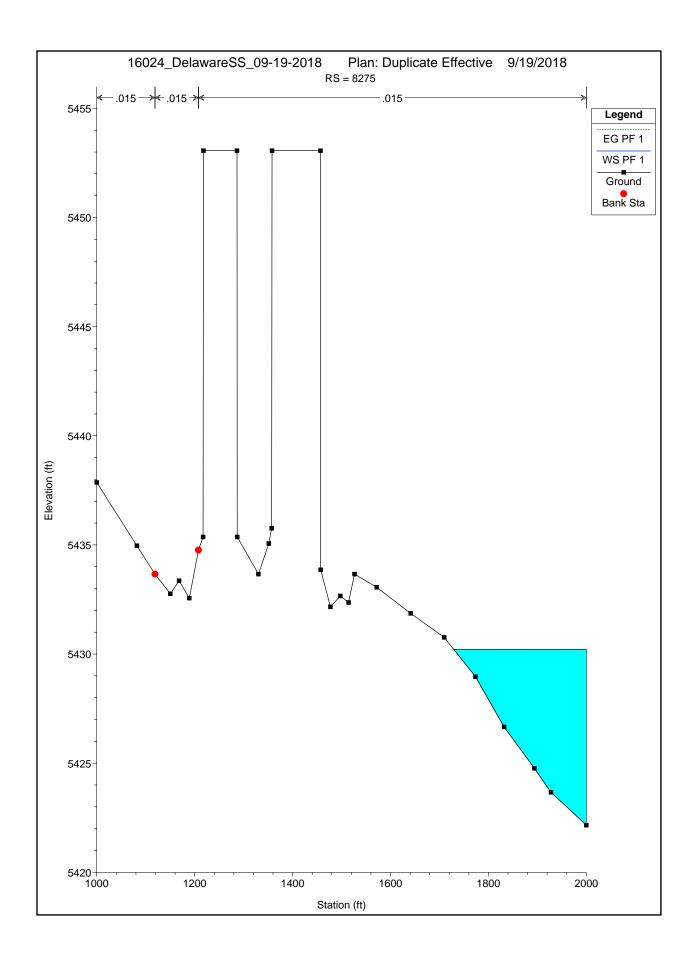


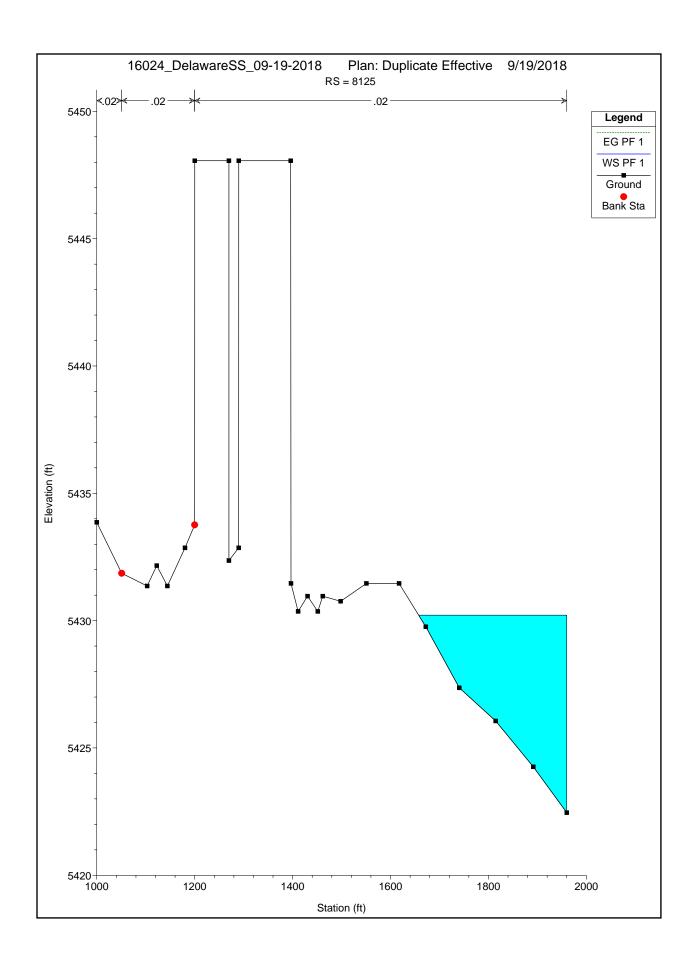


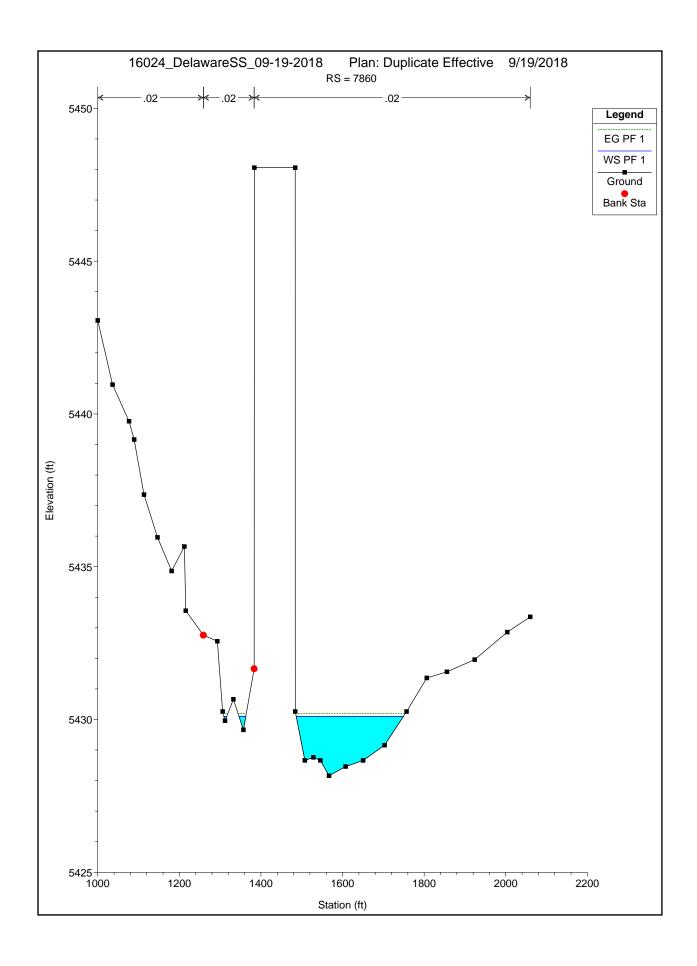


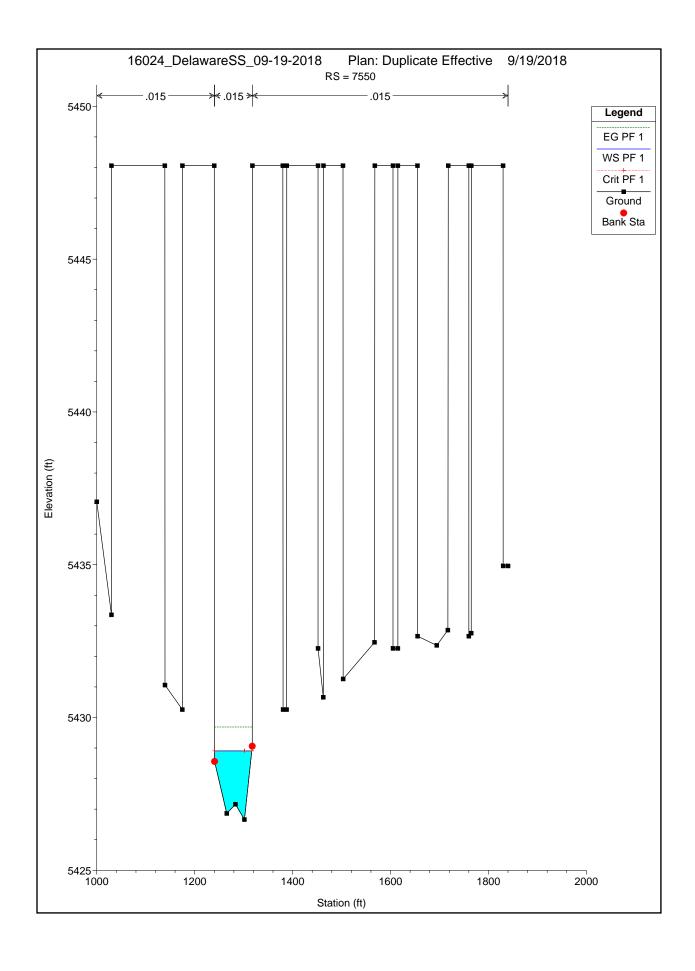


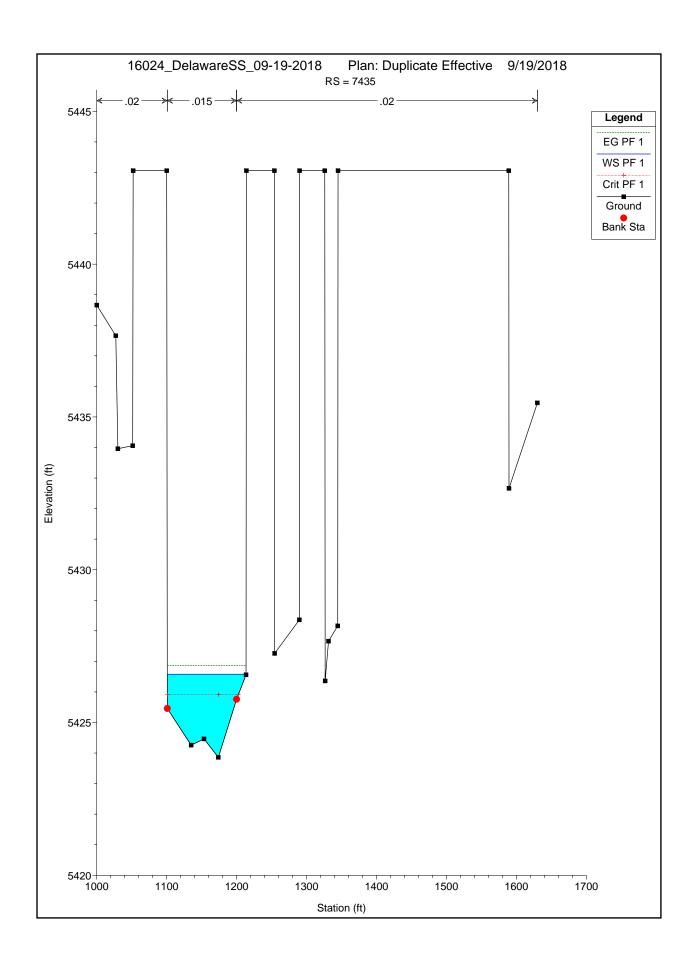


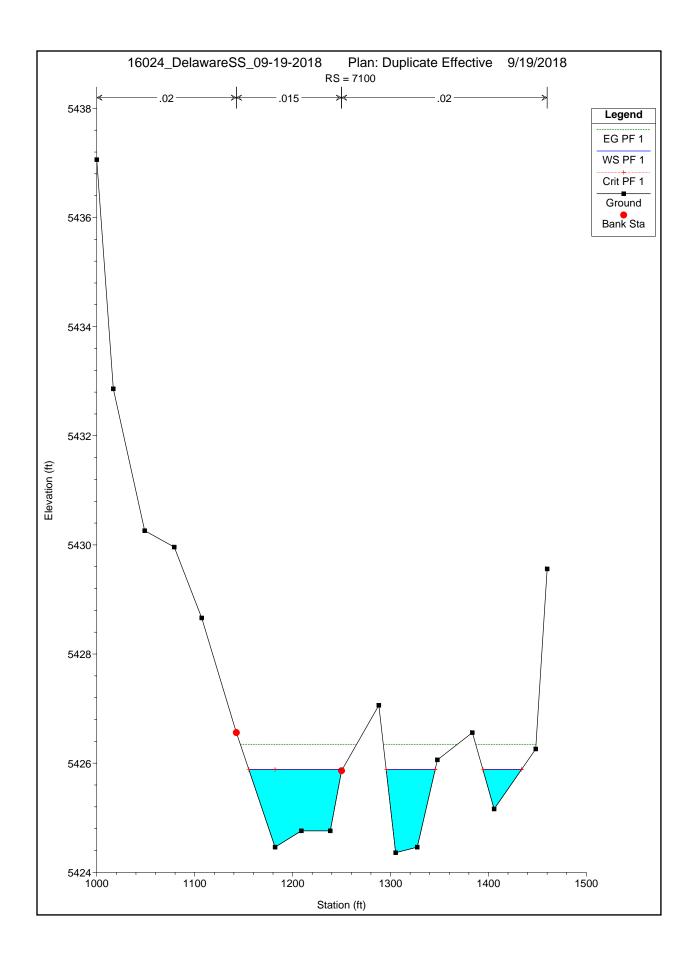


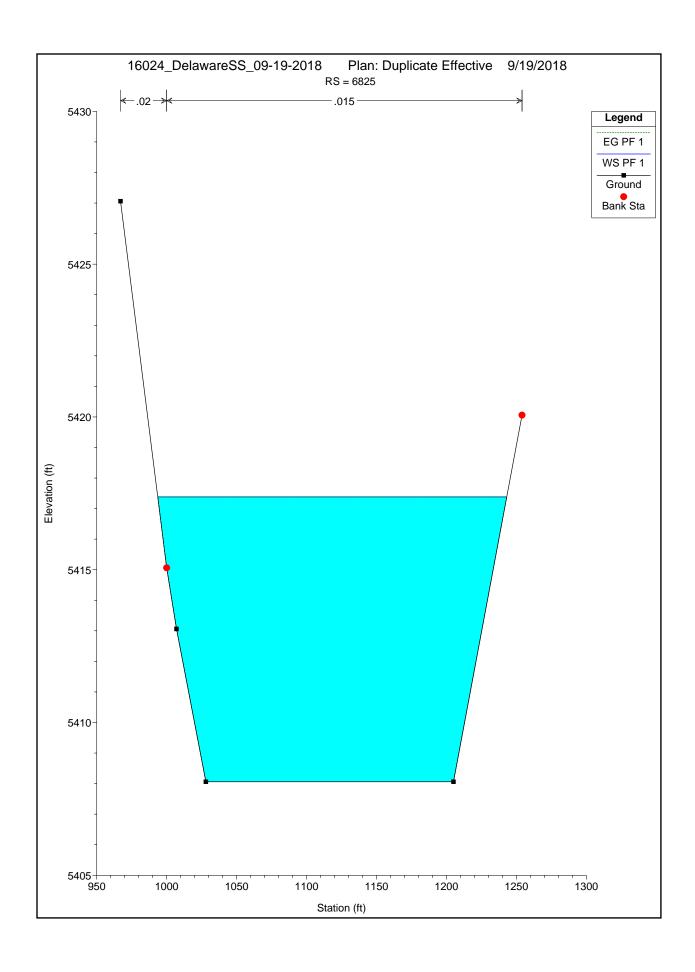


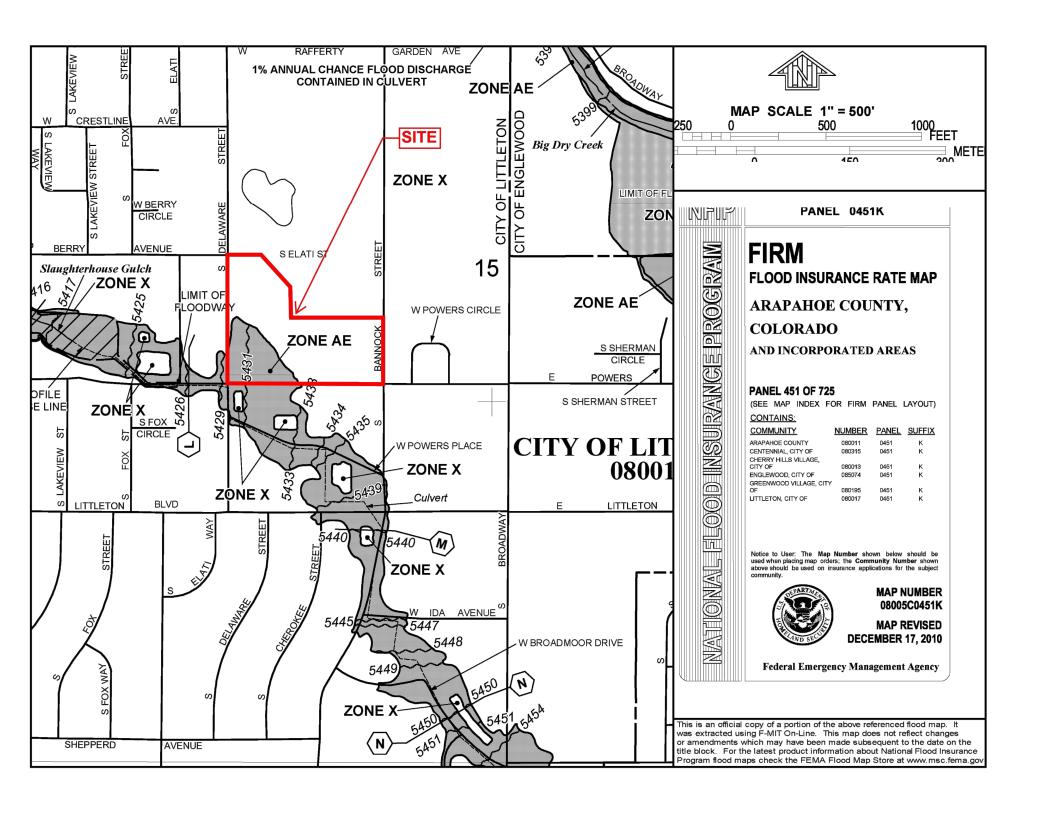

HEC-RAS Plan: DupEff River: Upper Slaughterh Reach: Delaware SS Profile: PF 1

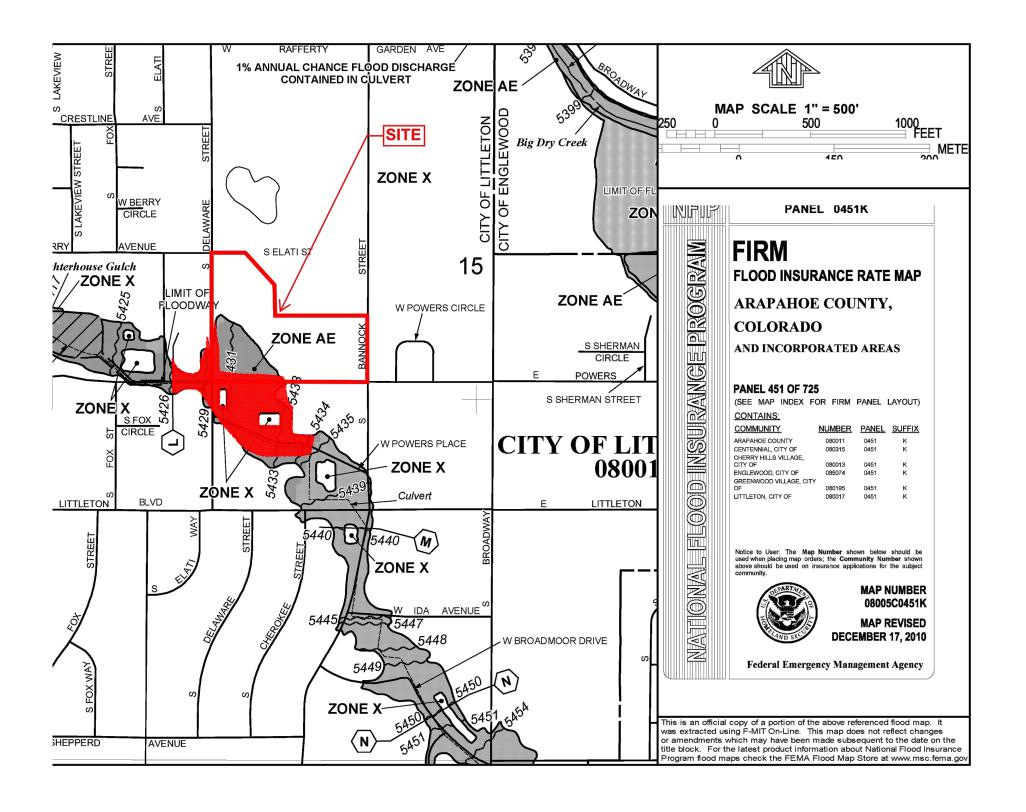

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Delaware SS	8350	PF 1	800.00	5432.86	5434.67	5434.67	5435.32	0.003047	6.46	123.76	95.98	1.00
Delaware SS	8275	PF 1	800.00	5432.56	5430.21		5430.22	0.000007		1177.68	270.87	0.00
Delaware SS	8125	PF 1	810.00	5431.36	5430.21		5430.22	0.000012		1232.98	302.40	0.00
Delaware SS	7860	PF 1	820.00	5429.66	5430.10		5430.20	0.000843	0.68	331.45	286.32	0.28
Delaware SS	7550	PF 1	830.00	5426.66	5428.91	5428.91	5429.69	0.002894	7.09	117.02	75.99	1.01
Delaware SS	7435	PF 1	840.00	5423.86	5426.58	5425.91	5426.86	0.000756	4.28	200.72	113.37	0.54
Delaware SS	7100	PF 1	840.00	5424.46	5425.88	5425.88	5426.35	0.003756	6.00	160.17	184.84	1.07
Delaware SS	6825	PF 1	1130.00	5408.06	5417.39		5417.39	0.000002	0.57	2002.02	249.47	0.03
Delaware SS	6575	PF 1	1130.00	5415.06	5416.66	5416.61	5417.32	0.002683	6.53	173.13	120.40	0.96

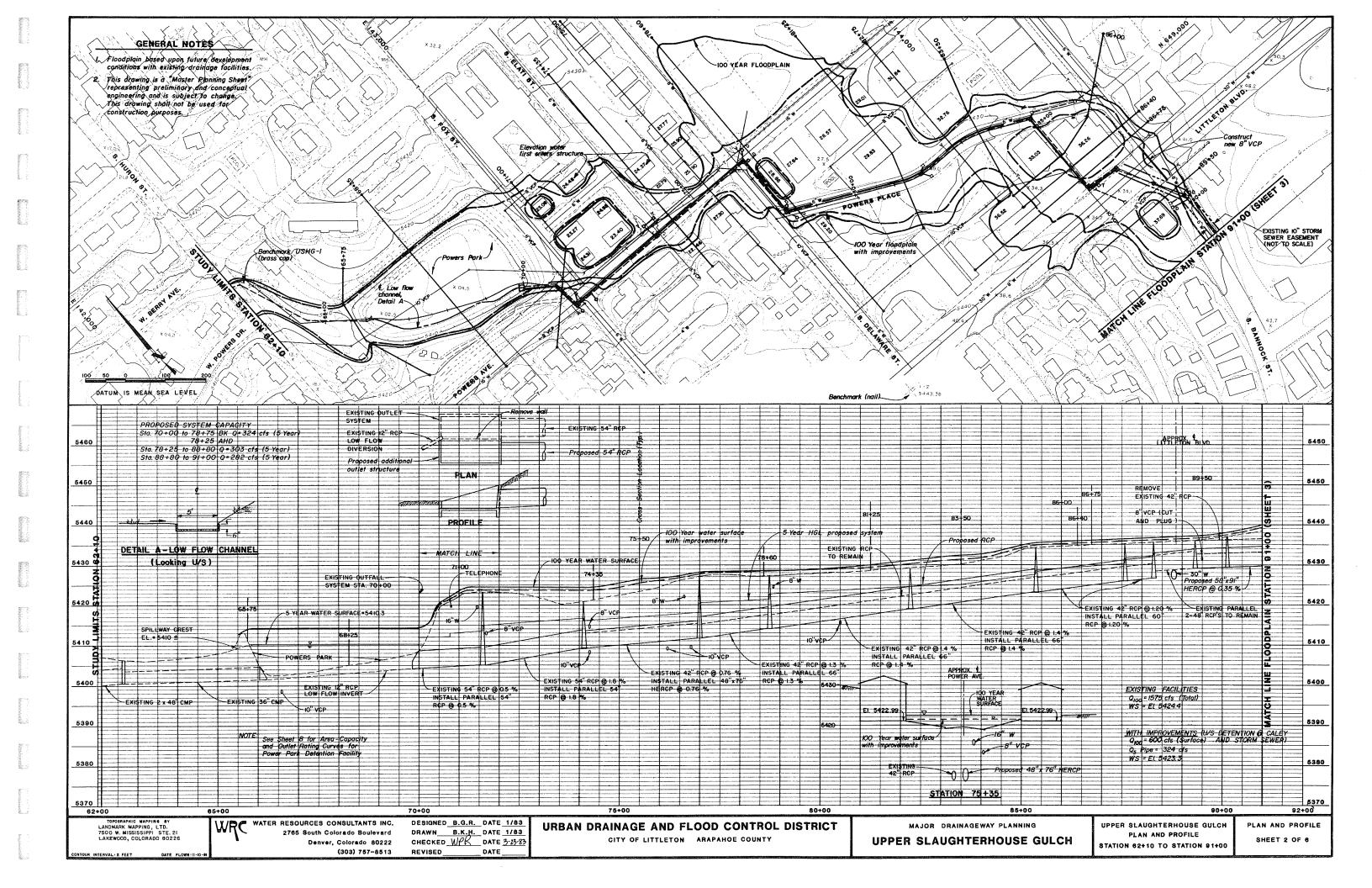












Appendix D –FIRM Panels

Appendix E –Reference Information

Application for Letter of Map Revision Slaughterhouse Gulch

APPLICANT:

City of Littleton Colorado

Urban Drainage & Flood Control District

PREPARED BY:

Boyle Engineering Corporation

MAY 1995

* HEC-2 WATER SURFACE PROFILES Version 4.6.2; May 1991 * RUN DATE 18JAN95 TIME 16:55:53 *

********* * U.S. ARMY CORPS OF ENGINEER * HYDROLOGIC ENGINEERING CENT * 609 SECOND STREET, SUITE D * DAVIS, CALIFORNIA 95616-468 (916) 756-1104

FILE: BEC-BASE-OUT

Х x xxxxxxx XXXXX XXXXX х х X X Х X X х х Х Х XXXXX XXXXXX XXXXX Х XXXXX X X X X х х Х X X X X XXXXXXX XXXXX XXXXXXX

18JAN95 16:55:53

PAGE 1

THIS RUN EXECUTED 18JAN95 16:55:53

HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

UPPER SLAUGHTERHOUSE GULCH - CLOMR

T2 BEC BASELINE MODEL, 100-YR FUTURE DEVEL WITH IMPROVEMENTS

BOYLE ENGINEERING CORPORATION, DN U02 300 14 T3

J1	ICHECK	INQ	NINV	IDIR	STRT	METRIC	HVINS	Q	WSEL	FQ
	0	2	0	0	-1	0	0	1125	5415	0
J2	NPROF	IPLOT	PRFVS	XSECV	XSECH	FN	ALLDC	IBW	CHNIM	ITRACE
	-1	0	-1	0	0	0	0	0	0	0
J3	VARIABLE	CODES FOR	SUMMARY	PRINTOUT						

GR

5429.6

1589.4

5432.4

1630.0

J3	VARIABLE	CODES FOR S	UMMARY PRIN	TOUT						
	150	200								
NC	.015	0.015	0.015	.1	. 3					
X1	65.75	4	1000.0	1157.0						
GR	5416.0	1000.0	5412.0	1045.0	5412.0	1141.0	5416.0	1157.0		
NC	0.035	0.040	0.032							
QT	1	1130								
X1	68.25	6	1000.0	1254.0	270.0	210.0	250.0			
GR	5424.0	967.0	5412.0	1000.0	5410.0	1007.0	5405.0	1028.0	5405.0	1205.0
GR	5417.0	1254.0								
NC	0.035	0.040	0.032							
QT	1	840								
X1	71.00	18	1142.6	1250.0	240.0	400.0	275.0			
X4	4	5435.0	1251.0	5435.0	1288.0	5435.0	1348.0	5435.0	1383.0	0.0
GR	5434.0	1000.0	5429.8	1016.9	5427.2	1048.9	5426.9	1079.2	5425.6	1107.2
GR	5423.5	1142.6	5421.4	1182.1	5421.7	1209.0	5421.7	1238.5	5422.8	1250.0
GR	5424.0	1288.1	5421.3	1305.2	5421.4	1327.3	5423.0	1347.9	5423.5	1383.6
GR	5422.1	1405.8	5423.2	1448.3	5426.5	1460.0				
NC	0.020	0.020	0.015							
QT	1	840								
Xl	74.35	17	1100.9	1199.9	365.0	290.0	335.0			
X4	8.0	5440.0	1052.0	5440.0	1100.0	5440.0	1214.0	5440.0	1254.0	5440.0
X4	1290.0	5440.0	1326.0	5440.0	1345.0	5440.0	1589.0			
GR	5435.6	1000.0	5434.6	1027.2	5430.9	1030.2	5431.0	1051.3	5422.4	1100.9
GR	5421.2	1135.0	5421.4	1153.4	5420.8	1173.8	5422.7	1199.9	5423.5	1213.4
GR	5424.2	1254.3	5425.3	1289.7	5423.3	1326.5	5424.6	1331.3	5425.1	1344.5
CP	E420 C	1500 4	E432 4	1620 0						

18JAN95	16:55:53
10011133	10.55.55

QT	1	830								
X1	75.5	42	1240.7	1317.7	115.0	115.0	115.0			4 /
GR	5434.0	1000.0	5430.3	1030.0	5445.0	1030.1	5445.0	1139.0	5428.0	1139.4
GR	5427.2	1174.9	5445.0	1175.0	5445.0	1240.0	5425.5	1240.7	5423.8	1265.5
	5424.1	1283.3	5423.6	1301.6	5426.0	1317.7	5445.0	1318.0	5445.0	1380.0
GR					5445.0	1388.0	5445.0	1451.9	5429.2	1452.0
GR	5427.2	1380.5	5427.2	1387.8			5428.2	1503.3	5429.4	1567.3
GR	5427.6	1462.7	5445.0	1463.0	5445.0	1503.0				
GR	5445.0	1568.0	5445.0	1605.0	5429.2	1605.1	5429.2	1615.0	5445.0	1615.1
GR	5445.0	1655.0	5429.6	1655.2	5429.3	1694.5	5429.8	1717.1	5445.0	1718.0
GR	5445.0	1759.9	5429.6	1760.0	5429.7	1764.9	5445.0	1765.0	5445.0	1829.9
GR	5431.9	1830.0	5431.9	1840.0						
0										
QT	1	820								
			1258.9	1383.4	310	310	310			
X1	78.6	30	1250.9	1303.4	310	310	310			
Х3	10		ALTERNA DE							
X4	2.0	5445.0	1384.0	5445.0	1484.0	Market Control		1000	5424 2	2112 4
GR	5440.0	1000.0	5437.9	1036.3	5436.7	1076.7	5436.1	1089.2	5434.3	1113.4
GR	5432.9	1146.5	5431.8	1181.0	5432.6	1212.4	5430.5	1215.7	5429.7	1258.9
GR	5429.5	1293.2	5427.2	1306.0	5426.9	1311.9	5427.6	1332.5	5426.6	1357.1
GR	5428.6	1383.4	5427.2	1484.1	5425.6	1507.6	5425.7	1528.7	5425.6	1545.7
GR	5425.1	1566.9	5425.4	1607.5	5425.6	1650.3	5426.1	1702.9	5427.2	1756.9
GR	5428.3	1806.4	5428.5	1855.8	5428.9	1923.8	5429.8	2003.7	5430.3	2060.0
GR	3420.3	1000.4	3420.3	1033.0	5120.5	1,13.0				
	NO SERVICE	2 222								
NC	0.020	0.020	0.020							
QT	1	810			3000 C. 1000 C.	1202/1000				
X1	81.25	22	1050.9	1200.0	250	280	265			
X3	10					1617.5				
X4	4	5445.0	1200.1	5445.0	1269.9	5445.0	1290.0	5445.0	1396.0	0.0
GR	5430.8	1000.0	5428.8	1050.9	5428.3	1103.0	5429.1	1122.5	5428.3	1144.2
GR	5429.8	1180.2	5430.7	1200.0	5429.3	1270.0	5429.8	1289.9	5428.4	1396.8
GR	5427.3	1411.2	5427.9	1430.5	5427.3	1451.5	5427.9	1461.6	5427.7	1498.1
					5426.7	1672.1	5424.3	1740.6	5423.0	1814.7
GR	5428.4	1550.8	5428.4	1617.5	3420.7	1072.1	3121.3	2.10.0		
GR	5421.2	1891.6	5419.4	1960.0						
QT	1	800					www.companies.com			
X1	82.75	25	1119.0	1207.9	170.0	125.0	150.0			
X3	10					1218.0				
X4	4	5450.0	1218.0	5450.0	1286.5	5450.0	1358.0	5450.0	1457.0	0.0
GR	5434.8	1000.0	5431.9	1082.0	5430.6	1119.0	5429.7	1150.3	5430.3	1168.2
GR	5429.5	1189.1	5431.7	1207.9	5432.3	1217.2	5432.3	1287.0	5430.6	1330.3
GR	5432.0	1351.4	5432.7	1357.2	5430.8	1457.4	5429.1	1477.3	5429.6	1497.5
					5430.0	1571.8	5428.8	1641.1	5427.7	1709.7
GR	5429.3	1514.4	5430.6	1526.4			5420.6	1927.7	5419.1	2000.0
GR	5425.9	1773.6	5423.6	1832.0	5421.7	1893.9	3420.0	1721.1	3113.1	
NC	0.015	0.015	0.015							
QT	1	800								
X1	83.5	16	1120.0	1225.0	65.0	85.0	75.0			
Х3	10									
GR	5434.8	1000.0	5434.0	1020.0	5432.0	1120.0	5430.2	1148.0	5429.8	1148.5
GR	5430.4	1170.0	5429.8	1185.0	5430.0	1210.0	5432.0	1225.0	5432.3	1230.0
GR		1278.0	5433.0	1315.0	5432.5	1330.0	5433.0	1345.0	5434.0	1363.0
			3433.0	1313.0	5152.5	1000.0				
GR	5434.4	1370.0								
1										PAGE 3
	18JAN95	16:55:53								11100 3
NC	0.020	0.020	0.015							
X1	85.6	25	1000.0	1101.0	100	210	210			
Х3	10									
		1000.0	5435.2	1001.0	5435.0	1004.0	5433.5	1038.0	5433.0	1038.1
GR	5445.0					1081.0	5435.5	1081.1	5436.0	1091.0
GR	5434.0	1058.0	5435.0	1080.0	5435.0			1170.1	5433.0	1183.0
GR	5437.2	1101.0	5445.0	1101.1	5445.0	1170.0	5436.0			
GR	5434.0	1192.0	5445.0	1192.1	5445.0	1220.0	5434.5	1220.1	5434.5	1235.0
GR	5434.0	1235.1	5434.4	1253.1	5434.0	1271.1	5434.5	1271.2	5436.0	1300.0
X1	86.0	26	1000.0	1076.0	40	40	40			
		20		=0.5 (col/7/17/17/	277038					
V2	10		5435.2	1001.0	5435.0	1003.0	5434.7	1008.0	5433.0	1011.0
X3	10	1000 0		TOOT. O	3433.0					
GR	5445.0	1000.0			E434 0	1027 0	243E U		5415 5	1055.1
GR GR	5445.0 5433.0	1014.0	5433.0	1020.0	5434.0	1037.0	5435.0	1055.0	5435.5 5445.0	1055.1
GR	5445.0 5433.0 5436.0	1014.0 1061.0	5433.0 5437.0	1020.0 1071.0	5437.5	1076.0	5445.0	1076.1	5445.0	1145.0
GR GR	5445.0 5433.0	1014.0	5433.0	1020.0	5437.5 5435.0	1076.0 1166.0	5445.0 5445.0	1076.1 1166.1	5445.0 5445.0	1145.0 1275.0
GR GR GR	5445.0 5433.0 5436.0	1014.0 1061.0	5433.0 5437.0	1020.0 1071.0	5437.5	1076.0	5445.0	1076.1	5445.0	1145.0
GR GR GR GR	5445.0 5433.0 5436.0 5436.5 5436.3	1014.0 1061.0 1145.1	5433.0 5437.0 5434.0	1020.0 1071.0 1157.0	5437.5 5435.0	1076.0 1166.0	5445.0 5445.0	1076.1 1166.1	5445.0 5445.0	1145.0 1275.0

	X1	86.1	27	1000.0	1084.0	10	25	10			
	Х3	10									
	GR	5445.0	1000.0	5436.2	1001.0	5435.2	1006.0	5434.8	1014.0	5434.3	1014.1
	GR	5433.5	1020.0	5434.0	1020.0	5434.1	1040.0	5433.6	1040.1	5435.0	1065.0
	GR	5435.5	1065.1	5437.3	1084.0	5445.0	1084.1	5445.0	1147.0	5436.5	1147.1
	GR	5434.3	1160.0	5434.8	1169.0	5445.0	1169.1	5445.0	1280.0	5436.0	1280.1
	GR	5436.0	1292.0	5436.7	1308.0	5436.4	1308.1	5437.0	1313.0	5437.2	1338.0
	GR	5437.5	1338.1	5440.0	1365.0	3130.1	1300.1	3137.0	1010.0	3137.12	1330.0
	QT	1	790								
	X1	86.4	23	1000.0	1115.0	30	30	30			
	Х3	10									
	GR	5440.0	1000.0	5435.4	1000.1	5435.0	1010.0	5434.0	1019.0	5433.5	1042.0
	GR	5434.0	1050.0	5435.0	1073.0	5436.0	1084.0	5436.3	1084.1	5437.0	1105.0
	GR	5437.2	1115.0	5440.0	1115.1	5440.0	1144.0	5437.0	1144.1	5434.7	1157.0
	GR	5435.0	1165.0	5440.0	1165.0	5440.0	1283.3	5435.0	1283.4	5435.3	1310.0
	GR	5435.0	1328.9	5437.1	1368.0	5439.9	1420.0	313313	2500.1	3.33.3	1310.0
	X1	86.75	22	1196.0	1303.0	35.0	35.0	35.0			
	Х3	10									
	GR	5438.6	1000.0	5438.1	1070.0	5445.0	1070.1	5445.0	1080.0	5436.8	1080.1
	GR	5436.0	1105.0	5436.0	1140.0	5436.0	1140.1	5435.4	1196.0	5435.0	1208.0
	GR	5435.0	1213.0	5434.3	1256.0	5434.1	1258.0	5434.3	1260.0	5435.0	1285.0
	GR	5435.4	1303.0	5445.0	1303.1	5445.0	1470.0	5434.7	1470.5	5435.3	1505.0
	GR	5436.4	1540.8	5440.0	1570.5						
	-	Walk 1/2017/07/07									
	NC	0.025	0.015	0.015							
	QT	1	840								
	X1	89.5	18	1190.0	1275.0	275.0	275.0	275.0			
	X3	10							5436.6		
	GR	5439.6	1000.0	5439.0	1033.7	5437.0	1062.0	5435.4	1091.3	5433.9	1116.7
	GR	5435.8	1141.0	5450.0	1141.5	5450.0	1189.5	5436.6	1190.0	5436.6	1214.0
	GR	5436.2	1214.1	5437.0	1223.0	5438.0	1240.0	5438.0	1268.0	5438.4	1268.1
	GR 1	5438.5	1275.0	5441.5	1275.1	5441.5	1300.0				
		18JAN95	16:55:53								PAGE
			10.00.00								FAGE
		1	830								
	X1	92.1	20	1210.6	1320.0	260	260	260			
	GR	5444.6	1000.0	5444.4	1011.3	5445.6	1017.6	5446.0	1055.3	5445.2	1100.6
	GR	5442.6	1127.3	5441.5	1135.5	5442.5	1169.5	5450.0	1170.0	5450.0	1210.5
	GR	5442.0	1210.6	5441.0	1226.0	5440.1	1236.0	5439.6	1236.1	5440.0	1261.0
	GR	5440.2	1293.0	5440.7	1293.1	5441.0	1296.0	5442.0	1310.0	5442.5	1320.0
	NC	0.015	0.020	0.015							
	QT	1	820								
	X1	93.45	12	1000.0	1200.0	200	120	135			
		5450.0	1000.0	5446.0	1000.1		1010.0	5443.5	1027.0 1115.0	5443.1	1027.1
		5443.0	1040.0	5443.4	1080.0	5443.0	1096.0	5442.5	1115.0	5443.0	1115.1
	GR	5443.0	1199.9	5450.0	1200.0						
	NC	0.020	0.015	0.015							
	QT	0.020	815	0.015							
	X1	95.0	20	1219.6	1320.0	40	70	155			
	X3	10	20	1219.0	1320.0	40	70	155			
	GR		1000.0	5448.0	1005.0	5446.0	1008.0	5445.0	1055.0	5444.4	1074.0
	GR		1084.0	5460.0	1084.5	5460.0	1121.0	5460.0	1121.5		
	GR		1135.5	5460.0	1219.5	5444.5					
	GR		1265.0	5444.1	1296.0	5444.4	1219.6 1296.1	5444.5 5444.4	1246.0 1320.0	5444.2 5460.0	1246.1
	010	3111.0	1203.0	3111.1	1250.0	3111.1	1230.1	3444.4	1320.0	3400.0	1320.1
	NC	0.025	0.025	0.025							
	QT	1	805								
	QT X1	1 95.5	805 23.0	1225.0	1277.9	15.0	100.0	50.0			
				1225.0	1277.9	15.0	100.0	50.0			
	X1 X3	95.5		1225.0 5448.0	1277.9 1010.0	15.0 5445.5	100.0	50.0 5445.5	1055.0	5444.9	1073.0
	X1 X3	95.5 10 5448.1	23.0						1055.0 1126.5	5444.9 5460.0	1073.0 1139.0
	X1 X3 GR	95.5 10 5448.1 5445.1	23.0	5448.0	1010.0	5445.5	1015.0	5445.5			
	X1 X3 GR GR	95.5 10 5448.1 5445.1 5460.0	23.0 1000.0 1089.0	5448.0 5460.0	1010.0 1089.5	5445.5 5460.0	1015.0 1126.0	5445.5 5460.0	1126.5 1242.9	5460.0	1139.0 1277.9
	X1 X3 GR GR GR GR	95.5 10 5448.1 5445.1 5460.0	23.0 1000.0 1089.0 1139.5	5448.0 5460.0 5460.0	1010.0 1089.5 1224.5	5445.5 5460.0 5444.0	1015.0 1126.0 1225.0	5445.5 5460.0 5443.6	1126.5	5460.0 5445.0	1139.0
	X1 X3 GR GR GR GR	95.5 10 5448.1 5445.1 5460.0 5460.0 5460.0	23.0 1000.0 1089.0 1139.5 1278.0 1426.0	5448.0 5460.0 5460.0 5460.0	1010.0 1089.5 1224.5 1375.0	5445.5 5460.0 5444.0 5447.1	1015.0 1126.0 1225.0 1375.1	5445.5 5460.0 5443.6	1126.5 1242.9	5460.0 5445.0	1139.0 1277.9
	X1 X3 GR GR GR GR GR	95.5 10 5448.1 5445.1 5460.0 5460.0	23.0 1000.0 1089.0 1139.5 1278.0 1426.0	5448.0 5460.0 5460.0 5460.0 5448.5	1010.0 1089.5 1224.5 1375.0 1426.4	5445.5 5460.0 5444.0 5447.1 5450.2	1015.0 1126.0 1225.0 1375.1 1465.0	5445.5 5460.0 5443.6 5447.9	1126.5 1242.9	5460.0 5445.0	1139.0 1277.9
	X1 X3 GR GR GR GR GR T X1	95.5 10 5448.1 5445.1 5460.0 5460.0 5460.0	23.0 1000.0 1089.0 1139.5 1278.0 1426.0	5448.0 5460.0 5460.0 5460.0	1010.0 1089.5 1224.5 1375.0 1426.4	5445.5 5460.0 5444.0 5447.1 5450.2	1015.0 1126.0 1225.0 1375.1	5445.5 5460.0 5443.6	1126.5 1242.9	5460.0 5445.0	1139.0 1277.9
	X1 X3 GR GR GR GR GR T X1	95.5 10 5448.1 5445.1 5460.0 5460.0 5460.0	23.0 1000.0 1089.0 1139.5 1278.0 1426.0 805 19	5448.0 5460.0 5460.0 5460.0 5448.5	1010.0 1089.5 1224.5 1375.0 1426.4	5445.5 5460.0 5444.0 5447.1 5450.2	1015.0 1126.0 1225.0 1375.1 1465.0	5445.5 5460.0 5443.6 5447.9	1126.5 1242.9 1386.7	5460.0 5445.0 5460.0	1139.0 1277.9 1387.0
	X1 X3 GR GR GR GR GR X1 X1 X3 X4	95.5 10 5448.1 5445.1 5460.0 5460.0 5460.0	23.0 1000.0 1089.0 1139.5 1278.0 1426.0 805 19	5448.0 5460.0 5460.0 5460.0 5448.5	1010.0 1089.5 1224.5 1375.0 1426.4 1336.1 1277.4 5460.0	5445.5 5460.0 5444.0 5447.1 5450.2 90 5460.0 1043.9	1015.0 1126.0 1225.0 1375.1 1465.0	5445.5 5460.0 5443.6 5447.9	1126.5 1242.9 1386.7	5460.0 5445.0 5460.0	1139.0 1277.9 1387.0
	X1 X3 GR GR GR GR GR X1 X3 X4	95.5 10 5448.1 5445.1 5460.0 5460.0 5460.0 1 96.4 10 10	23.0 1000.0 1089.0 1139.5 1278.0 1426.0 805 19	5448.0 5460.0 5460.0 5460.0 5448.5	1010.0 1089.5 1224.5 1375.0 1426.4	5445.5 5460.0 5444.0 5447.1 5450.2	1015.0 1126.0 1225.0 1375.1 1465.0	5445.5 5460.0 5443.6 5447.9	1126.5 1242.9 1386.7	5460.0 5445.0 5460.0	1139.0 1277.9 1387.0
	X1 X3 GR GR GR GR GR X1 X3 X4 X4	95.5 10 5448.1 5445.1 5460.0 5460.0 5460.0 10 10 1150.5 1489.5	23.0 1000.0 1089.0 1139.5 1278.0 1426.0 805 19 5460.0 5460.0	5448.0 5460.0 5460.0 5460.0 5448.5 1277.4 1000.5 1184.0	1010.0 1089.5 1224.5 1375.0 1426.4 1336.1 1277.4 5460.0 5460.0	5445.5 5460.0 5444.0 5447.1 5450.2 90 5460.0 1043.9 1189.0	1015.0 1126.0 1225.0 1375.1 1465.0 90 5460.0 5460.0	5445.5 5460.0 5443.6 5447.9 90 1066.0 1277.0	1126.5 1242.9 1386.7 5460.0 5460.0	5460.0 5445.0 5460.0 1105.0 1453.0	1139.0 1277.9 1387.0
	X1 X3 GR GR GR GR GR X1 X3 X4 X4 X4 GR	95.5 10 5448.1 5445.1 5460.0 5460.0 5460.0 1 96.4 10 10 1150.5 1489.5 5451.0	23.0 1000.0 1089.0 1139.5 1278.0 1426.0 805 19 5460.0 5460.0	5448.0 5460.0 5460.0 5460.0 5448.5 1277.4 1000.5 1184.0	1010.0 1089.5 1224.5 1375.0 1426.4 1336.1 1277.4 5460.0 5460.0	5445.5 5460.0 5444.0 5447.1 5450.2 90 5460.0 1043.9 1189.0 5451.7	1015.0 1126.0 1225.0 1375.1 1465.0 90 5460.0 5460.0	5445.5 5460.0 5443.6 5447.9 90 1066.0 1277.0	1126.5 1242.9 1386.7 5460.0 5460.0	5460.0 5445.0 5460.0 1105.0 1453.0	1139.0 1277.9 1387.0 5460.0 5460.0
	X1 X3 GR GR GR GR GR X1 X3 X4 X4	95.5 10 5448.1 5445.1 5460.0 5460.0 5460.0 1 96.4 10 10 1150.5 1489.5 5451.0	23.0 1000.0 1089.0 1139.5 1278.0 1426.0 805 19 5460.0 5460.0	5448.0 5460.0 5460.0 5460.0 5448.5 1277.4 1000.5 1184.0	1010.0 1089.5 1224.5 1375.0 1426.4 1336.1 1277.4 5460.0 5460.0	5445.5 5460.0 5444.0 5447.1 5450.2 90 5460.0 1043.9 1189.0	1015.0 1126.0 1225.0 1375.1 1465.0 90 5460.0 5460.0	5445.5 5460.0 5443.6 5447.9 90 1066.0 1277.0	1126.5 1242.9 1386.7 5460.0 5460.0	5460.0 5445.0 5460.0 1105.0 1453.0	1139.0 1277.9 1387.0 5460.0 5460.0

OT 1 820 X1 103.4 22 1362.1 1457.0 220 190 190 X1 103.4 22 1362.1 1457.0 220 190 190 X4 1151.0 5460.0 1000.5 5460.0 1059.0 5460.0 1280.0 5460.0 1306.0 5460.0 X4 1151.0 5460.0 1208.0 5460.0 1208.0 5460.0 1208.0 5460.0 1268.0 5460.0 1306.0 5460.0 X4 1151.0 5460.0 1457.5 5460.0 1492.0 5460.0 1560.5 5460.0 1618.0 5460.0 X4 1161.0 5460.0 1701.0 5460.0 1701.0 5460.0 1703.0 5460.0 1560.5 5460.0 1618.0 5460.0 CR 5458.0 1000.0 5457.0 1059.5 5456.0 1088.3 5454.8 1135.3 5451.4 1150.8 CR 5452.8 1208.2 5453.2 1222.7 5452.9 1268.3 5451.3 1290.2 5451.7 1305.5 CR 5450.0 1362.1 5449.7 1333.8 5449.6 1404.9 5448.7 1422.6 5451.3 1457.0 CR 5451.4 1492.9 5452.9 1560.1 5453.5 1618.8 5454.3 1640.5 5455.7 1701.4 NC 0.015 0.015 0.015 CT 1 832 X1 105.7 15 1237.9 1404.6 245 190 230 CR 5452.2 1200.0 5455.2 1041.4 5454.1 1106.9 5443.0 1139.3 5451.4 1237.9 CR 5451.2 1220.5 5451.0 1338.6 5451.3 1404.6 5451.5 1404.6 5451.5 CR 5453.9 1600.9 5454.2 1637.9 5454.8 1684.1 5455.5 1739.3 5455.5 1750.0 NC 0.015 0.015 0.015 CT 1 777 X1 109.2 13 1194.7 1327.6 250 400 350 CR 5455.0 1212.3 5455.0 1238.1 5454.2 1299.7 5454.6 1331.2 5456.1 1327.6 CR 5457.6 1395.0 5460.2 1415.6 5461.7 1404.0 CR 5458.0 1212.3 5455.0 1228.1 5454.2 1299.7 5454.6 1331.2 5456.1 1327.6 CR 5458.0 1212.3 5455.0 1258.1 5454.2 1259.7 5455.6 1190.2 5456.2 1410.0 CT 1 777 X1 1107.7 15 1102.2 1308.2 135 135 150 CR 5455.0 1200.0 5455.8 1034.4 5458.8 1095.7 5456.8 1153.4 5455.0 1194.7 6 CR 5458.6 1000.0 5455.8 1034.4 5458.8 1095.7 5456.8 1153.4 5455.0 1194.7 6 CR 5458.6 1000.0 5455.6 1009.9 5454.1 1322.5 5454.6 1154.9 5455.5 1263.5 5455.0 129.9 5455.6 1102.2 5454.6 1154.9 5455.5 1263.5 5455.7 1308.2 6 CR 5458.6 1000.0 5455.6 1009.9 5455.0 1209.9 5455.6 1102.2 5454.6 1154.9 5454.0 1197.4 6 CR 5458.6 1000.0 5465.6 1009.9 5455.0 1009.0 5455.5 1009.9 5455.0 1102.2 5454.6 1154.9 5454.5 1263.5 5455.7 1308.2 6 CR 5458.6 1000.0 5465.6 1009.9 5455.0 1009.0 5455.0 1009.0 5455.0 1009.0 5455.0 1009.0 5455.0 1009.0 5455.0 1009.0 5455.0 1009.0 5455.0 1009.0 5455.0 1009.0 5455.0 1009.0 5455.0 1009.0	X1 X4 GR GR GR	101.5 4 5451.8 5447.8 5449.1	16 5460.0 1000.0 1189.5 1288.8	1189.5 1105.0 5452.0 5446.2 5449.7	1272. 5460. 1027. 1207. 1322.	0 1 4 5 5 5	200 152.0 449.2 446.7 449.0	190 5460.0 1049.9 1226.6 1371.1	195 1289.0 5448.8 5446.3 5452.4	5460.0 1104.9 1247.6 1408.1	1322.0 5448.8 5449.0 5454.3	0.0 1152.3 1272.6 1442.9
X4 1362.0 5460.0 1457.5 5460.0 1492.0 5460.0 150.5 5460.0 1618.0 5460.0 X4 1641.0 5460.0 1701.0 5460.0 1713.0 5460.0 1759.5 5460.0 1618.0 5460.0 X4 1641.0 5460.0 1701.0 5460.0 1713.0 5460.0 1759.5 5460.0 X4 1641.0 5460.0 1701.0 5460.0 1713.0 5460.0 1759.5 5460.0 X4 1641.0 5460.0 1701.0 5460.0 1701.0 5460.0 1713.0 5460.0 1759.5 5460.0 X4 1641.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5460.0 1701.0 5454.8 1135.3 5454.8 1135.3 5453.4 1150.8 X545.0 1262.1 5444.7 1383.8 5449.6 1404.9 5444.7 1422.6 5451.3 1457.0 X6R 5451.4 1492.9 5452.9 1560.1 5453.5 1618.8 5454.3 1640.5 5455.7 1701.4 X67.0 X6R 5457.3 1712.9 5457.6 1760.0 X67.0 X67.	QT X1	1 103.4	820 22					5460.0	1089.0			
GR 5450.0 1362.1 5448.7 1383.8 5449.6 1404.9 5448.7 1422.6 5451.3 1457.0 GR 5451.4 1492.9 5452.9 1560.1 5453.5 1618.8 5454.3 1640.5 5455.7 1701.4 GR 5457.3 1712.9 5457.6 1760.0 NC 0.015	X4 X4 GR	1362.0 1641.0 5458.0	5460.0 5460.0 1000.0	1457.5 1701.0 5457.0	5460. 5460. 1059.	0 1 0 1 5 5	492.0 713.0 456.0	5460.0 5460.0 1088.3	1560.5 1759.5 5454.8	5460.0 5460.0 1135.3	1618.0 5453.4	5460.0 1150.8
QT 1 832 1237.9 1404.6 245 190 230 139.0 139.0 139.0 139.3 5451.4 1237.9 1237.9 1404.6 245 190 230 139.3 5451.4 1237.9 1237.9 1237.9 1237.9 1404.6 5451.5 1440.6 5452.7 1539.1 15454.8 1684.1 5455.5 1739.3 5455.5 1750.0	GR GR	5450.0 5451.4	1362.1 1492.9	5448.7 5452.9	1383. 1560.	8 5 1 5	449.6	1404.9	5448.7	1422.6	5451.3	1457.0
GR 5451.2 1280.5 5451.0 1338.6 5451.3 1404.6 5451.5 1440.6 5452.7 1539.1 GR 5453.9 1600.9 5454.2 1637.9 5454.8 1684.1 5455.5 1739.3 5455.5 1750.0 C 0.015 0.	QT X1	1 105.7	832 15	1237.9						1120.2	5451 4	1227 0
QT 1 777 X1 109.2 13 1194.7 1327.6 250 400 350 GR 5460.1 1000.0 5459.8 1034.4 5458.8 1095.7 5456.8 1153.4 5455.0 1194.7 GR 5455.0 1212.3 5455.0 1258.1 5454.2 1299.7 5454.6 1313.2 5456.1 1327.6 GR 5457.6 1395.0 5460.2 1415.6 5461.7 1440.0 QT 1 757 X1 110.7 15 1102.2 1308.2 135 135 150 GR 5458.6 1000.0 5456.5 1049.9 5455.6 1102.2 5454.6 1154.9 5454.0 1197.4 GR 5452.0 1207.0 5452.3 1216.1 5454.1 1228.7 5454.5 1263.5 5455.7 1308.2 GR 5457.7 1343.7 5460.2 1351.7 5461.4 1399.2 5462.1 1409.2 5462.2 1410.0 QT 1 737 X1 112.5 13 1013.0 1105.0 270 120 180 GR 5465.0 1000.0 5461.0 1000.1 5457.0 1013.0 5457.0 1022.0 5457.0 1026.0 GR 5456.0 1069.0 5455.0 1077.0 5454.8 1080.0 5455.0 1084.0 5456.0 1096.0 GR 5457.0 1105.0 5460.0 1133.0 5462.0 1144.0	GR	5451.2	1280.5	5451.0	1338.	6 5	451.3	1404.6	5451.5	1440.6	5452.7	1539.1
GR 5455.0 1212.3 5455.0 1258.1 5454.2 1299.7 5454.6 1313.2 5456.1 1327.6 GR 5457.6 1395.0 5460.2 1415.6 5461.7 1440.0 QT 1 757 X1 110.7 15 1102.2 1308.2 135 135 150 GR 5458.6 1000.0 5456.5 1049.9 5455.6 1102.2 5454.6 1154.9 5454.0 1197.4 GR 5452.0 1207.0 5452.3 1216.1 5454.1 1228.7 5454.5 1263.5 5455.7 1308.2 GR 5457.7 1343.7 5460.2 1351.7 5461.4 1399.2 5462.1 1409.2 5462.2 1410.0 QT 1 737 X1 112.5 13 1013.0 1105.0 270 120 180 GR 5465.0 1000.0 5461.0 1000.1 5457.0 1013.0 5457.0 1022.0 5457.0 1056.0 GR 5456.0 1069.0 5455.0 1077.0 5454.8 1080.0 5455.0 1084.0 5456.0 1096.0 GR 5457.0 1105.0 5460.0 1133.0 5462.0 1144.0	QT X1	1 109.2	777 13	1194.7						*****	5455 0	1104 7
X1 110.7 15 1102.2 1308.2 135 135 150 GR 5458.6 1000.0 5456.5 1049.9 5455.6 1102.2 5454.6 1154.9 5454.0 1197.4 GR 5452.0 1207.0 5452.3 1216.1 5454.1 1228.7 5454.5 1263.5 5455.7 1308.2 GR 5457.7 1343.7 5460.2 1351.7 5461.4 1399.2 5462.1 1409.2 5462.2 1410.0 QT 1 737 X1 112.5 13 1013.0 1105.0 270 120 180 GR 5465.0 1000.0 5461.0 1000.1 5457.0 1013.0 5457.0 1022.0 5457.0 1056.0 GR 5456.0 1069.0 5455.0 1077.0 5454.8 1080.0 5455.0 1084.0 5456.0 1096.0 GR 5457.0 1105.0 5460.0 1133.0 5462.0 1144.0	GR	5455.0	1212.3	5455.0	1258.	1 5	454.2	1299.7				
GR 5457.7 1343.7 5460.2 1351.7 5461.4 1399.2 5462.1 1409.2 5462.2 1410.0 QT 1 737 X1 112.5 13 1013.0 1105.0 270 120 180 GR 5465.0 1000.0 5461.0 1000.1 5457.0 1013.0 5457.0 1022.0 5457.0 1056.0 GR 5456.0 1069.0 5455.0 1077.0 5454.8 1080.0 5455.0 1084.0 5456.0 1096.0 GR 5457.0 1105.0 5460.0 1133.0 5462.0 1144.0	X1 GR	110.7 5458.6	15 1000.0	5456.5	1049.	9 5	455.6	1102.2	5454.6			
GR 5465.0 1000.0 5461.0 1000.1 5457.0 1013.0 5457.0 1022.0 5457.0 1056.0 GR 5456.0 1069.0 5455.0 1077.0 5454.8 1080.0 5455.0 1084.0 5456.0 1096.0 GR 5457.0 1105.0 5460.0 1133.0 5462.0 1144.0	GR	5457.7	1343.7	5460.2	1351.	7 5	3461.4	1399.2	5462.1			
DAGE.	GR GR	5465.0 5456.0	1000.0 1069.0	5461.0 5455.0	1000. 1077.	0 5	3457.0 3454.8	1013.0 1080.0	5457.0			
	1											PAGE

CCHV= .100 CEHV= .300 *SECNO 65.750

.002954 0. 0. 0. 0 .00 1.0 0 119.66 1147.21 *SECNO 68.250 3301 HV CHANGED MORE THAN HVINS

3302 WARNING:	CONVEY	NCE CHANGE	OUTSIDE OF	ACCEPTA	BLE RANGE,	KRATIO = 1	8.13		
68.250	9.33	5414.33	.00	.00	5414.33	.00	.01	.07	5412.00
1130.0	1.0	1129.0	. 0	7.4	1994.8	. 0	6.2	1.1	5417.00
.12	.14	.57	.00	.035	.032	.000	.000	5405.00	993.60
.000009	270.	250.	210.	2	0	0	.00	249.48	1243.08
*SECNO 71.000									

3265 DIVIDED FLOW

3685 20 TRIALS ATTEMPTED WSEL, CWSEL 3693 PROBABLE MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED .00 71 000 1.51 5422.81 5422.81 5423.27 .46 .01 .14 5423.50 .0 2.5 840.0 306.0 5422.80 534.0 . 0 91.5 65.8 13.1 5.84 4.65 .14 .00 .000 .032 .040 .000 5421.30 1155.63 .016477 240. 275. 400. 20 20 0 .00 182.66 1433.11

*SECNO 74.350

3265 DIVIDED FLOW

18JAN95 16:55:53

> SECNO DEPTH CWSEL CRIWS WSELK EG HV HI. OLOSS L-BANK ELEV OLOB 0 OCH **QROB** ALOB ACH AROB VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST

PAGE

7

3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 5.07 74.350 2.82 5423.62 .00 .00 5423.87 .25 .58 .02 . 0 831.6 8.4 204.5 . 0 7.1 14.5 3.6 5422.70 . 16 . 02 4 07 1.18 .020 .015 .020 .000 5420.80 1100.84 .000641 365. 335. 290. 5 0 0 .00 113.74 1327.66

*SECNO 75.500

3301 HV CHANGED MORE THAN HVINS

3685 20 TRIALS ATTEMPTED WSEL, CWSEL 3693 PROBABLE MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 75.500 2.24 5425.84

5425.84 .00 5426.63 .79 .14 .16 5425.50 830.0 . 0 830.0 . 0 . 0 116.7 . 0 15.0 3.9 5426.00 .17 .04 7.11 .00 .000 .015 .000 .000 5423.60 1240.69 .002917 115. 115. 20 0 .00 115. 15 75.97 1316.66

*SECNO 78.600

3265 DIVIDED FLOW

3301 HV CHANGED MORE THAN HVINS

3685 20 TRIALS ATTEMPTED WSEL, CWSEL 3693 PROBABLE MINIMUM SPECIFIC ENERGY

3720 CRITICAL DEPTH ASSUMED

3495 OVERBANK AREA ASSUMED NON-EFFECTIVE, ELLEA= 5429.70 ELREA= 5428.60 78.600 2.02 5428.62 5428.62 .00 5428.63 .01 .04 .08 5429.70 820.0 . 0 78.9 741.1 .0 107.2 811.9 5.9 5428.60 18.6

.26 .000041	.00 310.	.74 310.	.91 310.	.000	.015 18	.020	.000	5426.60 477.27	1298.10 1876.06	
*SECNO 81.250)									0
1 18JAN95	16:55:	53								PAGE
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR ICONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK ELEV R-BANK ELEV SSTA ENDST	
3280 CROSS SE	ECTION	81.25 EXT	CENDED	10.38 FEET						
3685 20 TRIAI 3693 PROBABLE 3720 CRITICAL	MINIMUM	SPECIFIC F								
3470 ENCROACE	HMENT STAT	TIONS=	. 0	1617.5 TY	YPE= 1	TARGET=	1617.4	99		
3495 OVERBANI	K AREA ASS	SUMED NON-E	EFFECTIVE,	ELLEA=	5428.80	ELREA=	5430.70			
81.250 810.0 .27 .005556	1.48 41.9 3.44 250.	5429.78 768.1 5.70 265.	5429.78 .0 .00 280.	.00 12.2 .020 20	5430.27 134.7 .020 19	.49 .0 .000	.04 22.0 .000	.14 7.8 5428.30 153.69	5428.80 5430.70 1026.00 1179.68	
*SECNO 82.750		82.75 EX	rended	12.41 FEET	r					
3685 20 TRIA 3693 PROBABLE 3720 CRITICAL	E MINIMUM	SPECIFIC I								
3470 ENCROACE	HMENT STA	TIONS=	.0	1218.0 T	YPE= 1	TARGET=	1217.9	99		
3495 OVERBAN	K AREA AS	SUMED NON-	EFFECTIVE,	ELLEA=	5430.60	ELREA=	5431.70			
82.750 800.0 .28 .004754	2.01 35.7 3.03 170.	5431.51 764.3 6.34 150.	5431.51 .0 .00 125.	.00 11.8 .020 20	5432.11 120.5 .020 11	.60	.78 22.5 .000 .00	.03 8.3 5429.50 113.17	5430.60 5431.70 1093.11 1206.27	
*SECNO 83.50	0									
3302 WARNING	: CONVEY	ANCE CHANG	E OUTSIDE	OF ACCEPTA	BLE RANGE,	KRATIO =	1.70			
3495 OVERBAN	K AREA AS	SUMED NON-	EFFECTIVE	, ELLEA=	5432.00	ELREA=	5432.00			
83.500 800.0 .29 .001649	2.10 .0 .00 65.	5431.90 800.0 5.23 75.	.00 .00 .00 85.	.000	5432.33 152.9 .015	.43 .0 .000	.20 22.7 .000 .00	.02 8.5 5429.80 102.75	5432.00 1121.52	
1 18JAN95	16:55	:53								PAGE
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK ELEV R-BANK ELEV SSTA ENDST	
*SECNO 85.60 3685 20 TRIA 3693 PROBABI 3720 CRITICA	ALS ATTEME LE MINIMUN	M SPECIFIC								
3495 OVERBAN	NK AREA AS	SSUMED NON-	-EFFECTIVE	, ELLEA=	5445.00	ELREA=	5437.20			
85.600 800.0	2.64		5 435.64		5436.36 117.3	.72	.46 23.4	.09 8.9		

20	.00	6.82	0.000						
.29			.00	.000	.015	.000	.000		1000.96
.003042	100.	210.	210.	20	11	0	.00	82.83	1083.79
+CECNO 06 00	0								
*SECNO 86.00 3685 20 TRIA		TED WORK OF	MODI						
3693 PROBABLI									
3720 CRITICAL			ENERGI						
3495 OVERBANI	K AREA AS	SUMED NON-	EFFECTIVE,	ELLEA=	5445.00	ELREA=	5437.50		
86.000	2.88	5435.88	5435.88	.00		.91		0.0	5445 00
800.0	.0	800.0	.0	.00	5436.78 104.8	.91	.12	.06 9.0	5445.00
.30	.00	7.64	.00	.000	.015		.000		
.002838	40.	40.	40.	20	8	0	.00	58.61	1059.54
*SECNO 86.100		TED WORK OF	.com						
3685 20 TRIAI 3693 PROBABLI									
3720 CRITICAL			PMRKG A						
3495 OVERBANI	K AREA AS	SUMED NON-	EFFECTIVE,	ELLEA=	5445.00	ELREA=	5437.30		
86.100	2.58	5436.08	5436.08	.00	5436.89	.81	. 03	.01	5445.00
800.0	.0	800.0	. 0		110.9	.0			
.30	.00	7.22	.00	.000	.015	.000	23.5	5433.50	
.002962	10.	10.	25.	20	11	0	.00	69.65	1071.23
SECNO 86.400	,								
*SECNO 86.400		THAN HVINS							
		THAN HVINS							
3301 HV CHANG									
3301 HV CHANG	GED MORE	:53	CRIWS	WSELK	EG	HV	нт.	OLOSS	IBANK ELEV
3301 HV CHANG	GED MORE 1		CRIWS QROB	WSELK ALOB	EG ACH	HV AROB	HL VOL	OLOSS TWA	L-BANK ELEV R-BANK ELEV
301 HV CHANG 18JAN95 SECNO	16:55	:53 CWSEL				HV AROB XNR	HL VOL WTN	OLOSS TWA ELMIN	R-BANK ELEV
301 HV CHANG 18JAN95 SECNO Q	16:55 DEPTH QLOB	:53 CWSEL QCH	QROB	ALOB	ACH	AROB	VOL	TWA	
3301 HV CHANG 18JAN95 SECNO Q TIME	16:55 DEPTH QLOB VLOB	:53 CWSEL QCH VCH	QROB VROB	ALOB XNL	ACH XNCH	AROB XNR	VOL WTN	TWA ELMIN	R-BANK ELEV SSTA
18JAN95 SECNO Q TIME SLOPE	16:55 DEPTH QLOB VLOB XLOBL	:53 CWSEL QCH VCH XLCH	QROB VROB XLOBR	ALOB XNL ITRIAL	ACH XNCH IDC	AROB XNR ICONT	VOL WTN CORAR	TWA ELMIN	R-BANK ELEV SSTA
18JAN95 SECNO Q TIME SLOPE	16:55 DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH ANCE CHANGE	QROB VROB XLOBR COUTSIDE C	ALOB XNL ITRIAL OF ACCEPTAI	ACH XNCH IDC	AROB XNR ICONT	VOL WTN CORAR	TWA ELMIN	R-BANK ELEV SSTA
18JAN95 SECNO Q TIME SLOPE 302 WARNING:	16:55 DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH ANCE CHANGE	QROB VROB XLOBR COUTSIDE C	ALOB XNL ITRIAL OF ACCEPTAI	ACH XNCH IDC	AROB XNR ICONT KRATIO =	VOL WTN CORAR	TWA ELMIN	R-BANK ELEV SSTA
18JAN95 SECNO Q TIME SLOPE 302 WARNING:	16:55 DEPTH QLOB VLOB XLOBL CONVEYE	CWSEL QCH VCH XLCH ANCE CHANGE	QROB VROB XLOBR COUTSIDE COUT	ALOB XNL ITRIAL F ACCEPTAL ELLEA= .00	ACH XNCH IDC BLE RANGE, 5440.00	AROB XNR ICONT KRATIO = ELREA=	VOL WTN CORAR 2.07 5437.20	TWA ELMIN TOPWID	R-BANK ELEV SSTA ENDST
18JAN95 SECNO Q TIME SLOPE 302 WARNING: 495 OVERBANK 86.400 790.0	DEPTH QLOB VLOB XLOBL CONVEYO	CWSEL QCH VCH XLCH ANCE CHANGE SUMED NON-E 5436.73 790.0	QROB VROB XLOBR COUTSIDE CO	ALOB XNL ITRIAL OF ACCEPTAN ELLEA= .00 .0	ACH XNCH IDC BLE RANGE, 5440.00 5436.99 194.5	AROB XNR ICONT KRATIO = ELREA= .26 .0	VOL WTN CORAR 2.07 5437.20 .04 23.6	TWA ELMIN TOPWID	R-BANK ELEV SSTA ENDST 5440.00 5437.20
18JAN95 SECNO Q TIME SLOPE 302 WARNING: 495 OVERBANK 86.400 790.0 .30	DEPTH QLOB VLOB XLOBL CONVEYA	CWSEL QCH VCH XLCH ANCE CHANGE SUMED NON-E 5436.73 790.0 4.06	QROB VROB XLOBR COUTSIDE CO EFFECTIVE, .00 .0 .00	ALOB XNL ITRIAL OF ACCEPTAN ELLEA= .00 .0 .000	ACH XNCH IDC BLE RANGE, 5440.00 5436.99 194.5 .015	AROB XNR ICONT KRATIO = ELREA= .26 .0 .000	VOL WTN CORAR 2.07 5437.20 .04 23.6 .000	TWA ELMIN TOPWID .06 9.1 5433.50	R-BANK ELEV SSTA ENDST 5440.00 5437.20 1000.07
18JAN95 SECNO Q TIME SLOPE 3302 WARNING: 3495 OVERBANK 86.400 790.0	DEPTH QLOB VLOB XLOBL CONVEYO	CWSEL QCH VCH XLCH ANCE CHANGE SUMED NON-E 5436.73 790.0	QROB VROB XLOBR COUTSIDE CO	ALOB XNL ITRIAL OF ACCEPTAN ELLEA= .00 .0	ACH XNCH IDC BLE RANGE, 5440.00 5436.99 194.5	AROB XNR ICONT KRATIO = ELREA= .26 .0	VOL WTN CORAR 2.07 5437.20 .04 23.6	TWA ELMIN TOPWID .06 9.1 5433.50	R-BANK ELEV SSTA ENDST 5440.00 5437.20 1000.07
18JAN95 SECNO Q TIME SLOPE 3302 WARNING: 3495 OVERBANK 86.400 790.0 .30	DEPTH QLOB VLOB XLOBL CONVEYA	CWSEL QCH VCH XLCH ANCE CHANGE SUMED NON-E 5436.73 790.0 4.06	QROB VROB XLOBR COUTSIDE CO EFFECTIVE, .00 .0 .00	ALOB XNL ITRIAL OF ACCEPTAN ELLEA= .00 .0 .000	ACH XNCH IDC BLE RANGE, 5440.00 5436.99 194.5 .015	AROB XNR ICONT KRATIO = ELREA= .26 .0 .000	VOL WTN CORAR 2.07 5437.20 .04 23.6 .000	TWA ELMIN TOPWID .06 9.1 5433.50	R-BANK ELEV SSTA ENDST 5440.00 5437.20 1000.07
18JAN95 SECNO Q TIME SLOPE 8302 WARNING: 8495 OVERBANK 86.400 790.0 .30 .000676	DEPTH QLOB VLOB XLOBL CONVEYA	CWSEL QCH VCH XLCH ANCE CHANGE SUMED NON-E 5436.73 790.0 4.06	QROB VROB XLOBR COUTSIDE CO EFFECTIVE, .00 .0 .00	ALOB XNL ITRIAL OF ACCEPTAN ELLEA= .00 .0 .000	ACH XNCH IDC BLE RANGE, 5440.00 5436.99 194.5 .015	AROB XNR ICONT KRATIO = ELREA= .26 .0 .000	VOL WTN CORAR 2.07 5437.20 .04 23.6 .000	TWA ELMIN TOPWID .06 9.1 5433.50	R-BANK ELEV SSTA ENDST 5440.00 5437.20 1000.07
18JAN95 SECNO Q TIME SLOPE 3302 WARNING: 3495 OVERBANK 86.400 790.0 .30 .000676	DEPTH QLOB VLOB XLOBL CONVEYA AREA ASS 3.23 .0 .00 30.	CWSEL QCH VCH XLCH ANCE CHANGE SUMED NON-E 5436.73 790.0 4.06 30.	QROB VROB XLOBR COUTSIDE CO SFFECTIVE, .00 .00 .30.	ALOB XNL ITRIAL OF ACCEPTAN ELLEA= .00 .00 .000 .3	ACH XNCH IDC BLE RANGE, 5440.00 5436.99 194.5 .015	AROB XNR ICONT KRATIO = ELREA= .26 .0000 0	VOL WTN CORAR 2.07 5437.20 .04 23.6 .000 .00	TWA ELMIN TOPWID .06 9.1 5433.50	R-BANK ELEV SSTA ENDST 5440.00 5437.20 1000.07 1096.72
18JAN95 SECNO Q TIME SLOPE 3302 WARNING: 3495 OVERBANK 86.400 790.0 .30 .000676 SECNO 86.750 3265 DIVIDED	DEPTH QLOB VLOB XLOBL CONVEYA AREA ASS 3.23 .0 .00 .30. FLOW	CWSEL QCH VCH XLCH ANCE CHANGE SUMED NON-E 5436.73 790.0 4.06 30.	QROB VROB XLOBR COUTSIDE CO SFFECTIVE, .00 .00 .30.	ALOB XNL ITRIAL OF ACCEPTAN ELLEA= .00 .00 .000 .3	ACH XNCH IDC BLE RANGE, 5440.00 5436.99 194.5 .015	AROB XNR ICONT KRATIO = ELREA= .26 .0000 0	VOL WTN CORAR 2.07 5437.20 .04 23.6 .000 .00	TWA ELMIN TOPWID .06 9.1 5433.50	R-BANK ELEV SSTA ENDST 5440.00 5437.20 1000.07
18JAN95 SECNO Q TIME SLOPE 3302 WARNING: 3495 OVERBANK 86.400 790.0 .30 .000676 SECNO 86.750 265 DIVIDED	DEPTH QLOB VLOB XLOBL CONVEYA AREA ASS 3.23 .0 .00 .30. FLOW CONVEYA 2.86	CWSEL QCH VCH XLCH ANCE CHANGE SUMED NON-E 5436.73 790.0 4.06 30.	QROB VROB XLOBR COUTSIDE COUT	ALOB XNL ITRIAL OF ACCEPTAN ELLEA= .00 .00 .00 3	ACH XNCH IDC BLE RANGE, 5440.00 5436.99 194.5 .015 0	AROB XNR ICONT KRATIO = ELREA= .26 .00 .000 0 KRATIO =	VOL WTN CORAR 2.07 5437.20 .04 23.6 .000 .00	TWA ELMIN TOPWID .06 9.1 5433.50 96.65	R-BANK ELEV SSTA ENDST 5440.00 5437.20 1000.07 1096.72
18JAN95 SECNO Q TIME SLOPE 3302 WARNING: 3495 OVERBANK 86.400 790.0 .30 .000676 SECNO 86.750 265 DIVIDED 302 WARNING: 86.750 790.0	DEPTH QLOB VLOB XLOBL CONVEYA AREA ASS 3.23 .0 .00 .30. FLOW CONVEYA 2.86 125.4	CWSEL QCH VCH XLCH ANCE CHANGE SUMED NON-E 5436.73 790.0 4.06 30.	QROB VROB XLOBR COUTSIDE COUT	ALOB XNL ITRIAL OF ACCEPTAN ELLEA= .00 .00 .3 F ACCEPTAN .00 117.8	ACH XNCH IDC BLE RANGE, 5440.00 5436.99 194.5 .015 0	AROB XNR ICONT KRATIO = ELREA=	VOL WTN CORAR 2.07 5437.20 .04 23.6 .000 .000	.06 9.1 5433.50 96.65	R-BANK ELEV SSTA ENDST 5440.00 5437.20 1000.07 1096.72
18JAN95 SECNO Q TIME SLOPE 3302 WARNING: 495 OVERBANK 86.400 790.0 .30 .000676 SECNO 86.750 265 DIVIDED 302 WARNING:	DEPTH QLOB VLOB XLOBL CONVEYA AREA ASS 3.23 .0 .00 .30. FLOW CONVEYA 2.86	CWSEL QCH VCH XLCH ANCE CHANGE SUMED NON-E 5436.73 790.0 4.06 30.	QROB VROB XLOBR COUTSIDE COUT	ALOB XNL ITRIAL OF ACCEPTAN ELLEA= .00 .00 .00 3	ACH XNCH IDC BLE RANGE, 5440.00 5436.99 194.5 .015 0	AROB XNR ICONT KRATIO = ELREA= .26 .00 .000 0 KRATIO =	VOL WTN CORAR 2.07 5437.20 .04 23.6 .000 .000	.06 9.1 5433.50 96.65	R-BANK ELEV SSTA ENDST 5440.00 5437.20 1000.07 1096.72

PAGE 10

*SECNO 89.500

3265 DIVIDED FLOW

3301 HV CHANGED MORE THAN HVINS

3685 20 TRIALS ATTEMPTED WSEL,CWSEL 3693 PROBABLE MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED

3495 OVERBAN	IK AREA ASS	SUMED NON-E	EFFECTIVE,	ELLEA=	5436.60	ELREA=	5438.50			
89.500	.70	5436.90	5436.90	.00	5437.51	.60	.15	.16	5436.60	
840.0	807.8	32.2	. 0	127.8	10.0	. 0	25.8	10.5	5438.50	
.32	6.32	3.20	.00	.025	.015	.000	.000	5436.20	1063.79	
.004943	275.	275.	275.	20	11	0	.00	109.18	1221.91	
18JAN95	16:55	:53								PAGE 11
SECNO	DEPTH	CWSEL	CRIWS	WSELK	EG	HV	HL	OLOSS	L-BANK ELEV	
Q	QLOB	QCH	QROB	ALOB	ACH	AROB	VOL	TWA	R-BANK ELEV	
TIME	VLOB	VCH	VROB	XNL	XNCH	XNR	WTN	ELMIN	SSTA	
SLOPE	XLOBL	XLCH	XLOBR	ITRIAL	IDC	ICONT	CORAR	TOPWID	ENDST	
*SECNO 92.10	00									
3265 DIVIDED										
		MED MOET C	acet							
3685 20 TRIA 3693 PROBABL	LE MINIMUM	SPECIFIC I								
3720 CRITICA			E443 55	0.0	E442 44	. 67	.98	. 02	5442.00	
92.100	2.17	5441.77	5441.77		5442.44 125.9	.67	26.6	11.2	5442.50	
830.0	1.2	828.8	.0	1.5	.015	.000	.000	5439.60	1133.52	
.33 .002963	.84 260.	6.58 260.	260.	20	23	0	.00	103.49	1306.71	
*SECNO 93.45 3685 20 TRIA 3693 PROBABI 3720 CRITICA 93.450 820.0 .33	ALS ATTEMP LE MINIMUM AL DEPTH A 1.43 .0	SPECIFIC 1 SSUMED 5443.93 820.0 5.32	5443.93 .0	.000	5444.37 154.2 .015	.44 .0 .000	.44 27.0 .000	.02 11.6 5442.50 177.75	5450.00 5450.00 1022.16 1199.91	
.003528	200.	135.	120.	20	14		.00	177.73	1133.31	
*SECNO 95.00	00									
3265 DIVIDED	D FLOW									
3685 20 TRIA 3693 PROBABI 3720 CRITICA	LE MINIMUM AL DEPTH A	1 SPECIFIC	ENERGY				40	02	5444.50	
		5445.59			5446.10 113.1	.0	.49 27.5	.02 12.1	5444.40	
815.0	129.3	685.7	.0 .06	36.3 .020	.015	.015	.000	5444.10	1027.42	
.34	3.56 40.	6.06 155.	70.	20	8	0	.00	157.03	1320.01	
*SECNO 95.5	0.0									
3265 DIVIDE										
3685 20 TRI		PTED WSEL.C	WSEL							
3693 PROBAB 3720 CRITIC	LE MINIMUN	M SPECIFIC								
18JAN95	16:55	5:53								PAGE 12
	DEPTH	CWSEL	CRIWS	WSELK	EG	VH	HL	OLOSS	L-BANK ELEV	
SECNO			QROB	ALOB	ACH	AROB XNR	VOL WTN	TWA ELMIN	R-BANK ELEV SSTA	
Q	QLOB	QCH						CITIVITIA	SOIM	
		VCH XLCH	VROB XLOBR	XNL ITRIAL	IDC	ICONT	CORAR	TOPWID	ENDST	
Q TIME	QLOB VLOB	VCH	VROB					TOPWID	ENDST	
Q TIME	QLOB VLOB	VCH XLCH	VROB			ICONT	CORAR	TOPWID	ENDST 5444.00	
Q TIME SLOPE	XLOBT ATOB TOB	VCH XLCH 5445.97	VROB XLOBR	.00 48.5	IDC 5446.54 97.3	.57	.18 27.6	.02 12.2	ENDST 5444.00 5445.00	
Q TIME SLOPE	QLOB VLOB XLOBL	VCH XLCH 5445.97 639.4	VROB XLOBR 5445.97	ITRIAL	IDC 5446.54	ICONT	CORAR	TOPWID	ENDST 5444.00	

*SECNO 96.400

3265 DIVIDED FLOW

	3470 ENCROAC				1540.0	TYPE=	1 TARGET=	-1277.	400	
		460.00 E	LENCR= 100	000.00						
	96.400	3.44	5446.54	.00	.00	5446.78	.24	.20	. 03	5445.00
	805.0	. 0	675.8	129.2	. 0	163.2	48.7	28.0	12.5	5443.70
	. 35	.00	4.14	2.65	.000	.025	.025	.000	5443.10	1277.40
	.001243	90.	90.	90.	2	0		.00	88.47	
	*SECNO 99.55	0								
	3265 DIVIDED	FLOW								
	3302 WARNING	: CONVEY	ANCE CHANG	E OUTSIDE (OF ACCEPT!	ABLE RANGE,	KRATIO =	3.62		
	99.550	5 41	5446.81	.00	.00	5446.87	. 05	0.7	0.2	F444 00
	820.0	33.4		53.6	60.6		112.7	.07	.02 13.4	5444.00
	.39	.55	1.97	.48	.035		.035	30.5	5441.40	
	.000098	270.	315.	200.	.033		.035	.00	226.05	
						V.5				1002.03
	*SECNO 101.5	00								
	3301 HV CHANG	GED MORE	THAN HVINS							
	3685 20 TRIA 3693 PROBABLI 3720 CRITICA	E MINIMUM	SPECIFIC I							
	101.500		5448.34	5448.34	.00	5449.07	.73	.06	.20	5447.80
	820.0	6.8	813.2	. 0	5.5		.0	32.0	14.1	
	.40	1.24	6.88	.00	.035	.020	.000	.000	5446.20	
	.004850	200.	195.	190.	20	18	0	.00	97.17	1266.51
1	18JAN95	16:55	:53							
	SECNO	DEPTH	CWSEL	CRIWS	WSELK	EG	HV	HL	OLOSS	L-BANK ELEV
	Q	QLOB	QCH	QROB	ALOB	ACH	AROB	VOL	TWA	R-BANK ELEV
	TIME	VLOB	VCH	VROB	XNL	XNCH	XNR	WTN	ELMIN	SSTA
	SLOPE	XLOBL	XLCH	XLOBR	ITRIAL	IDC	ICONT	CORAR	TOPWID	ENDST
,	SECNO 103.40	00	12							
3	3685 20 TRIAI 3693 PROBABLE 3720 CRITICAL	MINIMUM	SPECIFIC I							
-	103.400	2.07	5450.77	5450.77	.00	5451.47	.70	.96	.00	5450.00
	820.0	.0	820.0	.0	.0	122.4	.0	32.5	14.5	5451.30
	.41	.03	6.70	.00	.000	.020	.000	.000	5448.70	
	.005251	220.	190.	190.	20	8	0	.00	87.95	1450.04
*	SECNO 105.70	00								
	105.700	1.04	5452.04	.00	.00	5452.35	.31	. 84	.04	5451.40
	832.0	30.7	686.4	114.9	12.6	144.7	34.9	33.3	15.5	5451.40
	.42	2.44	4.74	3.29	.015	.015	.015	.000	5451.00	1198.51
	.002768	245.	230.	190.	2	0	0	.00	286.33	1484.84
	SECNO 109.20									
3	685 20 TRIAL 693 PROBABLE	S ATTEMPT	SPECIFIC E							
3	685 20 TRIAL 693 PROBABLE 720 CRITICAL	S ATTEMPT E MINIMUM DEPTH AS	SPECIFIC E							
3	685 20 TRIAL 693 PROBABLE 720 CRITICAL 109.200	LS ATTEMPT E MINIMUM L DEPTH AS 1.65	SPECIFIC E SSUMED 5455.85		.00	5456.33	.48	1.03	. 05	5455.00
3	685 20 TRIAL 693 PROBABLE 720 CRITICAL 109.200 777.0	S ATTEMPT E MINIMUM DEPTH AS 1.65 26.3	SPECIFIC E SSUMED 5455.85 750.7	ENERGY 5455.85 .0	8.4	133.6	.48	1.03 34.7		
3	685 20 TRIAI 693 PROBABLE 720 CRITICAI 109.200 777.0 .44	S ATTEMPT E MINIMUM L DEPTH AS 1.65 26.3 3.14	SPECIFIC E SSUMED 5455.85 750.7 5.62	5455.85 .0	8.4 .015	133.6 .015	.000	34.7	.05	
3	685 20 TRIAL 693 PROBABLE 720 CRITICAL 109.200 777.0	S ATTEMPT E MINIMUM DEPTH AS 1.65 26.3	SPECIFIC E SSUMED 5455.85 750.7	ENERGY 5455.85 .0	8.4	133.6	.0	34.7	.05 17.2	5456.10

PAGE 13

110.700	4.38	5456.38	.00	.00	5456.44	.05	.06	.04	5455.60
757.0	11.6	743.0	2.4	17.8	397.2	4.1	35.6	17.9	5455.70
					.015		.000	5452.00	1056.65
.000149	135.	150.	135.	2	0	0	.00	263.68	1320.33

*SECNO 112.500

18JAN95

3301 HV CHANGED MORE THAN HVINS

3685 20 TRIALS ATTEMPTED WSEL, CWSEL 3693 PROBABLE MINIMUM SPECIFIC ENERGY

16:55:53

3693 PROBABLE MINIMUM SPECIFIC ENERG

SECNO	DEPTH	CWSEL	CRIWS	WSELK	EG	HV	HL	OLOSS	L-BANK ELEV
Q	QLOB	QCH	QROB	ALOB	ACH	AROB	VOL	TWA	R-BANK ELEV
TIME	VLOB	VCH	VROB	XNL	XNCH	XNR	WTN	ELMIN	SSTA
SLOPE	XLOBL	XLCH	XLOBR	ITRIAL	IDC	ICONT	CORAR	TOPWID	ENDST

3720 CRITICAL	DEPTH AS	SSUMED							
112.500	2.84	5457.64	5457.64	.00	5458.27	.63	.07	.17	5457.00
737.0	1.6	730.5	4.8	.7	114.1	1.9	36.8	18.7	5457.00
.47	2.51	6.40	2.57	.015	.015	.015	.000	5454.80	1010.95
.003140	270.	180.	120.	20	23	0	.00	99.98	1110.93

1 PAGE 15

THIS RUN EXECUTED 18JAN95 16:55:56

PAGE 14

HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

BOYLE ENGINEERING CORPO

SUMMARY PRINTOUT TABLE 150

	SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	AREA
*	65.750	.00	.00	.00	5412.00	1125.00	5413.55	5413.55	5414.25	29.54	6.72	167.33
*	68.250	250.00	.00	.00	5405.00	1130.00	5414.33	.00	5414.33	.09	.57	2002.26
*	71.000	275.00	.00	.00	5421.30	840.00	5422.81	5422.81	5423.27	164.77	5.84	157.27
*	74.350	335.00	.00	.00	5420.80	840.00	5423.62	.00	5423.87	6.41	4.07	211.67
*	75.500	115.00	.00	.00	5423.60	830.00	5425.84	5425.84	5426.63	29.17	7.11	116.73
*	78.600	310.00	.00	.00	5426.60	820.00	5428.62	5428.62	5428.63	.41	.74	919.13
*	81.250	265.00	.00	.00	5428.30	810.00	5429.78	5429.78	5430.27	55.56	5.70	146.85
*	82.750	150.00	.00	.00	5429.50	800.00	5431.51	5431.51	5432.11	47.54	6.34	132.26
*	83.500	75.00	.00	.00	5429.80	800.00	5431.90	.00	5432.33	16.49	5.23	152.91
*	85.600	210.00	.00	.00	5433.00	800.00	5435.64	5435.64	5436.36	30.42	6.82	117.31
*	86.000	40.00	.00	.00	5433.00	800.00	5435.88	5435.88	5436.78	28.38	7.64	10"
*	86.100	10.00	.00	.00	5433.50	800.00	5436.08	5436.08	5436.89	29.62	7.22	110.86
*	86.400	30.00	.00	.00	5433.50	790.00	5436.73	.00	5436.99	6.76	4.06	194.55
*	86.750	35.00	.00	.00	5434.10	790.00	5436.96	.00	5437.02	1.85	2.25	457.01

	*	89.500	275.00	.00	.00	5436.20	840.00	5436.90	5436.90	5437.51	49.43	3.20	137.83
	*	92.100	260.00	.00	.00	5439.60	830.00	5441.77	5441.77	5442.44	29.63	6.58	127.40
	*	93.450	135.00	.00	.00	5442.50	820.00	5443.93	5443.93	5444.37	35.28	5.32	154.18
1		18JAN95	16:55:53										PAGE 16
		SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	AREA
	*	95.000	155.00	.00	.00	5444.10	815.00	5445.59	5445.59	5446.10	32.14	6.06	149.45
	*	95.500	50.00	.00	.00	5443.60	805.00	5445.97	5445.97	5446.54	54.23	6.57	145.86
	*	96.400	90.00	.00	.00	5443.10	805.00	5446.54	.00	5446.78	12.43	4.14	211.94
	*	99.550	315.00	.00	.00	5441.40	820.00	5446.81	.00	5446.87	. 98	1.97	544.97
	*	101.500	195.00	.00	.00	5446.20	820.00	5448.34	5448.34	5449.07	48.50	6.88	123.73
	*	103.400	190.00	.00	.00	5448.70	820.00	5450.77	5450.77	5451.47	52.51	6.70	122.36
		105.700	230.00	.00	.00	5451.00	832.00	5452.04	.00	5452.35	27.68	4.74	192.24
	*	109.200	350.00	.00	.00	5454.20	777.00	5455.85	5455.85	5456.33	31.21	5.62	141.99
	*	110.700	150.00	.00	.00	5452.00	757.00	5456.38	.00	5456.44	1.49	1.87	419.23
	*	112.500	180.00	.00	.00	5454.80	737.00	5457.64	5457.64	5458.27	31.40	6.40	116.68
1		18JAN95	16:55:53										PAGE 17

BOYLE ENGINEERING CORPO

SUMMARY PRINTOUT TABLE 150

	SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
*	65.750	1125.00	5413.55	.00	.00	-1.45	119.66	.00
*	68.250	1130.00	5414.33	.00	.77	.00	249.48	250.00
*	71.000	840.00	5422.81	.00	8.48	.00	182.66	275.00
*	74.350	840.00	5423.62	.00	.81	.00	113.74	335.00
*	75.500	830.00	5425.84	.00	2.23	.00	75.97	115.00
*	78.600	820.00	5428.62	.00	2.77	.00	477.27	310.00
*	81.250	810.00	5429.78	.00	1.16	.00	153.69	265.00
*	82.750	800.00	5431.51	.00	1.73	.00	113.17	150.00
*	83.500	800.00	5431.90	.00	.39	.00	102.75	75.00
*	85.600	800.00	5435.64	.00	3.73	.00	82.83	210.00
*	86.000	800.00	5435.88	.00	. 24	.00	58.61	40.00
*	86.100	800.00	5436.08	.00	.21	.00	69.65	10.00
*	86.400	790.00	5436.73	.00	.65	.00	96.65	30.00
*	86.750	790.00	5436.96	.00	.23	.00	297.93	35.00
*	89.500	840.00	5436.90	.00	05	.00	109.18	275.00
*	92.100	830.00	5441.77	.00	4.86	.00	103.49	260.00
*	93.450	820.00	5443.93	.00	2.16	.00	177.75	135.00
*	95.000	815.00	5445.59	.00	1.66	.00	157.03	155.00

	95.500	805.00	5445.97	.00	.38	.00	127.94	50.00	
*	96.400	805.00	5446.54	.00	.57	.00	88.47	90.00	
*	99.550	820.00	5446.81	.00	.28	.00	226.05	315.00	
*	101.500	820.00	5448.34	.00	1.53	.00	97.17	195.00	1
*	103.400	820.00	5450.77	.00	2.43	.00	87.95	190.00	
	105.700	832.00	5452.04	.00	1.26	.00	286.33	230.00	
1	18JAN95	16:55:53	3						PAGE
	SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH	
*	SECNO	Q 777.00	CWSEL 5455.85	DIFWSP	DIFWSX	DIFKWS	TOPWID 150.17	XLCH 350.00	
*									
	109.200	777.00	5455.85	.00	3.82	.00	150.17	350.00	

19

SUMMARY OF ERRORS AND SPECIAL NOTES

CAUTION	SECNO=	65.750	PROFILE=	1	CRITICAL DEPTH ASSUMED
				2	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING	SECNO=	68.250	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE INTO
CAUTION	SECNO=	71.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	71.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION		71.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAULION	SECNO-	71.000	I KOI III	-	
WARNING	SECNO=	74.350	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
CAUTION	SECNO=	75.500	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	75.500	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	SECNO=	75.500	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CHOILON	0200				
CAUTION	SECNO=	78.600	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	78.600	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION		78.600	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION	SECNO-	70.000	TROTILLE	_	
CAUTION	SECNO=	81.250	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION		81.250	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
			PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION	SECNO=	81.250	PROFILE=	1	20 TRIANG ATTEMETED TO BELLEVIOLE
CAUTION	CECNO-	82.750	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION		82.750	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
				1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION	SECNO=	82.750	PROFILE=	1	20 TRIANG ATTEMETED TO BEHAVED WELL
WARNING	CECNO-	83.500	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING	SECNO=	03.500	I KOI ILL	-	Description and the second sec
CAUTION	SECNO=	85.600	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION		85.600	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION		85.600	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION	SECNO-	03.000	TROTTED-	*	
CAUTION	SECNO=	86.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	86.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION		86.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION	SECNO=	30.000	I KOI IBB-	-	
CAUTION	SECNO=	86.100	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION		86.100	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
			PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION	SECNO=	86.100	PROFILE=	1	20 IRIADO MIDILIDO TO DIAGONA
WADNING	SECNO=	86.400	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
MARTING	SECIO-	00.100	11.01111	570	
WADNING	SECNO=	86.750	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
MAKMING	BECNO-	30.730	11.01 1111	-	OFFICE ACTION OF A TOTAL TO SEE THE SECOND S
CAUTION	SECNO=	89.500	PROFILE=	1	CRITICAL DEPTH ASSUMED
	SECNO=	89.500	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
	SECNO=	89.500	PROFILE=	25.0	
CAULION	PECINO=	33.300	I KOI IDB-	-	

PAGE 20

Appendix F – Ineffective Floodplain Modeling Supplemental Information

The following discussion had been provided to better describe the ineffective elements of the floodplain modeling provided in support of this Conditional Letter of Map Revision (CLOMR) request.

The following Figure 1 shows 3 sections from the 1995 Effective LOMR HEC-2 model (Effective Model): Sections 75.5, 78.6 and 81.25

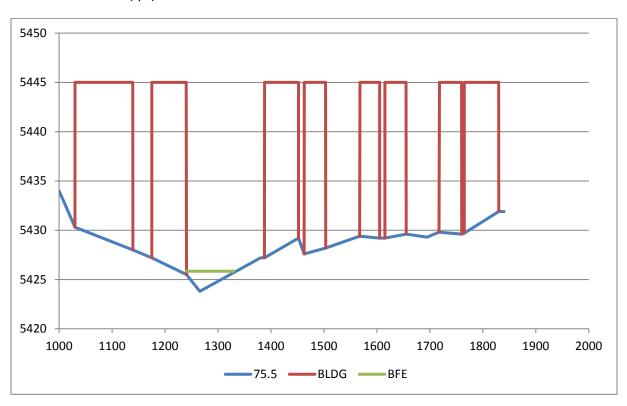


Figure 1 Google Image ©2018 of Area of Interest (section locations approximate – for illustration only)

EFFECTIVE MODEL:

In reviewing the 1995 Effective LOMR HEC-2 model, the following elements related to effective flow characteristics were observed (Figures 2 through 4 below are taken from the Effective Model input data):

1. At Section 75.5 (see Figure 2 below) the flow is essentially confined to the W. Powers Avenue street section at a location that is associated with the first row of houses to the west of S. Delaware Street. The flow in this section is supercritical with a velocity of 7.1 feet per second (fps).

Figure 2: HEC-2 Effective Model Section 75.5

2. At Section 78.6 (see Figure 3 below) the 100-year water surface elevation is computed to be 0.02 feet above the potential overflow from W. Powers Place to W. Powers Avenue. The flow in W. Powers Avenue is delineated as ineffective flow until the water surface elevation in W. Powers Place rises above the right bank elevations. The flow in this section has a velocity of 0.74 fps. The model clearly is showing that a significant portion of the W. Powers Place flow gets to W. Powers Avenue. Our observation is that it is not reasonable due to the very shallow overflow depth of 0.02 feet and looking at the obstructions in the overflow path.

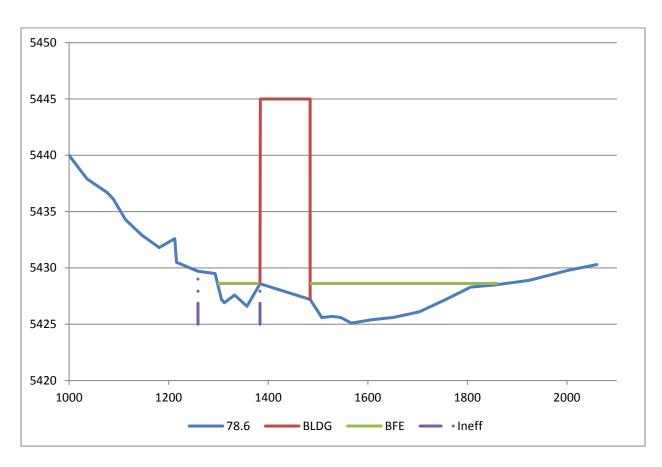


Figure 3: HEC-2 Effective Model Section 78.6

3. At Section 81.25 (see Figure 4 below) the 100-year water surface elevation is below the overflow elevation between W. Powers Place and W. Powers Avenue. Therefore, the northern portion of the section (in W. Powers Avenue) is cut off from consideration using an ineffective flow limit set at 1617.5. The flow in this section has a velocity of 5.7 fps. This condition recommended a further review of the hydraulic condition upstream of 81.25 through the downstream section 75.5 where flows re-combine and concentrate within W. Powers Avenue. Our review consisted of evaluation of additional surface topography and probable overflow conditions whereby flow could cross from W. Powers Place to W. Powers Avenue.

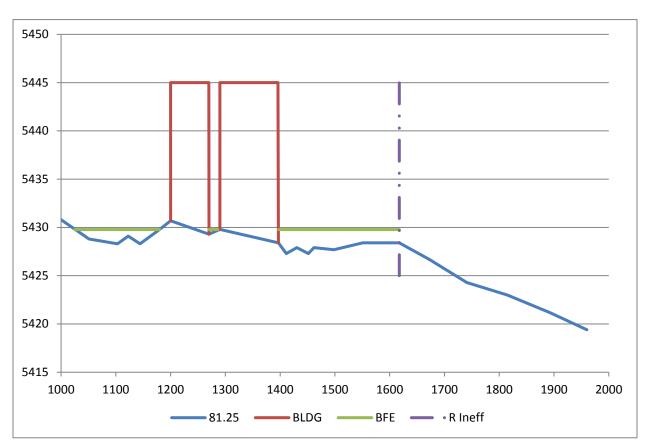


Figure 4: HEC-2 Effective Model Section 81.25

EXISTING CONDITIONS MODEL:

A site visit was conducted to evaluate the practical elements that would influence the hydraulic condition. It was determined that the following represents a reasonable hydraulic condition (Figures 5 through 13 are Google Streetview images provided to assist in the hydraulic discussion provided below):

- 1. A review of the original documents and available topography indicated that the primary flow path for surface water was northwesterly down W. Powers Place, northerly down S. Delaware Street and westerly down W. Powers Avenue.
- 2. A review of the Effective Model determined that the potential for overflow to the north through the buildings from W. Powers Place to W. Powers Avenue should be closely evaluated given the Effective HEC-2 model results. Figures 6 and 10 highlight the nature of this potential overflow path that delivers surface water from W. Powers Place to W. Powers Avenue. Conservative calculations determined that about 12 percent of the total flow will overflow from W. Powers Place to W. Powers Avenue (approximately 100 cfs). This is conservative as it relates to the subject property but is not conservative as it relates to the intersection of W. Powers Place and S. Delaware Street. This assumption may need to be reevaluated.
- 3. The overflow enters W. Powers Avenue approximately 160 feet east of the W. Powers Avenue and S. Delaware Street intersection (See Figure 12).
- 4. No overflow was computed for sections further to the east of this location, since 100-year flows at and upstream of Section 81.25 (Section 18125 in the CLOMR request) were below the overflow elevations along the ridge between W. Powers Place to W. Powers Avenue (based on the available topography and Effective mapping information, it is believed that surface water doesn't overtop the ridgeline).
- 5. The result is a reported potential for hydraulic flow for those sections upstream of the overflow connection 160 feet east of the West Powers and South Delaware intersection when viewing the HEC-RAS sections (1 cfs flow assignment from the steady flow step backwater condition of including sections in order to provide opportunity for flows over the lateral structure, which don't materialize due to higher topography in that area). Consequently those sections upstream of newly modeled section 17964.5 have no effective flow for the entire section and are limited to flow in the street as a practical consideration given the shallow depth of flow and the vegetative / property fence line condition (see Figures 9 and 11 below).
- 6. Once flow is present within the West Powers Avenue corridor east of its intersection with South Delaware Street, we reviewed the topography and concluded that the flows beyond the fence would be subject to the constraints of the topography downstream of Section 17860, which are (a) at most an effective flow limit of about 65 feet given a 1:1 effective limit from the buildings to the west and (b) a flow depth of less than 6-inches given the rise of topography on the eastern ROW of S. Delaware Street (see field topography and Figures 9, 10 and 12). We therefore selected the practical effective flow boundary at the southern fence boundary as being most representative of the probable hydraulic condition given overflow flow rates, steady flow calculations, computed flow depths, vegetation and topography. The 100-year flow depths thus computed represent a conservative and reasonable calculation of potential flood depths for this zone.

7.	For flow to collect and combine into a single stream heading down W. Powers Avenue to the west, the homes on the west side of South Delaware would resist the flow and create an ineffective flow zone at a 1:1 relationship upstream of the intersection (see Figures 1, 8 and
	11).

Figure 5: Location A – View upstream primary flow path along West Powers Place (looking southeast)

Figure 6: Location A – Potential overflow path to north from West Powers Place (looking north)

Figure 7: Location B – View upstream primary flow path along South Delaware St (looking South)

Figure 8: Location B – View downstream primary flow path along West Powers Ave (looking Westerly). West Powers Ave drops off after intersection (hydraulics achieve critical flow).

Figure 9: Location B – View upstream secondary flow path along West Powers Ave (looking Easterly)

Figure 10: Location C – Potential overflow path from north from West Powers Place (looking south)

Figure 11: Location B – View of potential for flow from east of South Delaware St (looking North)

Figure 12: Location C – View down secondary flow path along West Powers Avenue (looking west)

Figure 13: Location D – View from South Delaware Street – Note: Back of curb/fence grades one or more feet higher than field grades of Section 178+60.

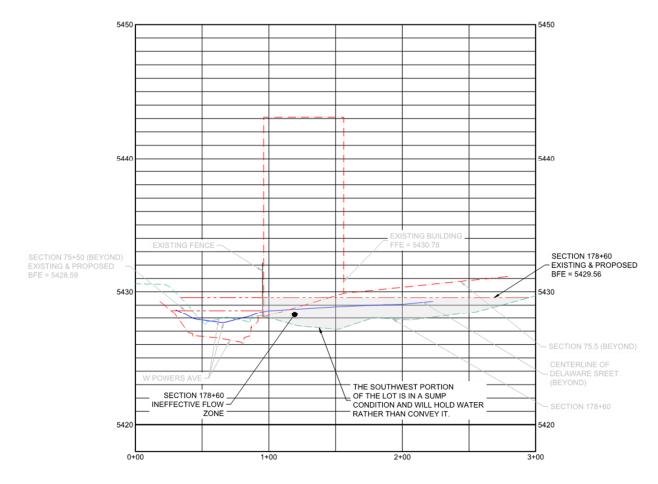


Figure 14: Section 178+60 with view of Section 75+50 and Centerline of Delaware street

Appendix G – ESA Compliance Documentation

August 24, 2018

Mark Cevaal, P.E. Redland Consulting Group, Inc. 1500 West Canal Court Littleton, Colorado 80120

RE: Incidental Take Statement
Conditional Letter of Map Revision
South Delaware Street and West Powers Avenue
Littleton, Colorado

Dear Mr. Cevaal:

A Conditional Letter of Map Revision (CLOMR) is requested for a parcel of land located on the northeast corner of South Delaware Street and West Powers Avenue in Littleton, Colorado (approximate Latitude 39.615392° North, Longitude -104.992774° West). On July 18, 2018, a biologist from LT Environmental, Inc. (LTE) conducted a survey of the property for Threatened and Endangered species and their potential habitat to assess whether project activities have the potential to cause a "take" of federally listed species. The results of the field survey are summarized below.

EXISTING CONDITIONS

The site consists of a field of nonnative grasses and forbs with trees lining the sidewalks on the west and south sides of the parcel. The site is surrounded by commercial development on the north and east sides and residential buildings on the west and south sides of the parcel. The project area is located within the Natural Resources Conservation Service Major Land Resource Region G - Western Great Plains Range and Irrigated Region¹.

The property is located within an established urban and suburban area. Urban expansion and frequent disturbances now dictate the vegetation and landscape surrounding the project area. A photographic log is provided as Attachment 1.

SPECIES OF CONCERN

The attached United States Fish and Wildlife Service (USFWS) Information for Planning and Consultation² (IPaC) report provides a list of protected species with the potential to occur on or

¹ US Department of Agriculture, National Resources Conservation Service. 2006. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin.

² USFWS. Information for Planning and Consultation (IPaC) https://ecos.fws.gov/ipac/ Accessed May 2018.

near the property, as listed by the USFWS and protected by the Endangered Species Act³ (Attachment 2). None of the species of concern or threatened and endangered species or their associated habitat were observed. Additionally, no migratory bird nests protected by the Migratory Bird Treaty Act⁴ were observed.

Project activities will likely have no effect on federally listed species with the potential to occur in the project area.

Sincerely,

LT ENVIRONMENTAL, INC.

Hank Raizen Staff Biologist Deidre Duffy Project Ecologist

ATTACHMENTS:

Photographic Log USFWS IPaC Report

³ Endangered Species Act. 1973. 16 U.S.C. § 1531 et seq. United States of America.

⁴ Migratory Bird Treaty Act. 1918. 16 U.S.C. 203-712. United States of America.

PHOTOGRAPHIC LOG

Photograph 1: View northeast from the southwest corner of the Subject Property.

Photograph 2: View east from the southwest corner of the Subject Property.

Powers and Delaware Littleton, CO

Page 1 of 4 Photographs Taken: July 18, 2018

PHOTOGRAPHIC LOG

Photograph 3: View north from the southwest corner of the Subject Property.

Photograph 4: View south from the northwest corner of the Subject Property.

Powers and Delaware Littleton, CO Photographs Taken: July 18, 2018

PHOTOGRAPHIC LOG

Photograph 5: View west from the southeast corner of the Subject Property.

Photograph 6: View of intersection southwest of the Subject Property from southwest corner of the Subject Property.

Powers and Delaware Littleton, CO Photographs Taken: July 18, 2018

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as trust resources) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Arapahoe County, Colorado

Local office

Colorado Ecological Services Field Office

(303) 236-4773

(303) 236-4005

MAILING ADDRESS

Denver Federal Center P.O. Box 25486 Denver, CO 80225-0486 PHYSICAL ADDRESS

134 Union Boulevard, Suite 670 Lakewood, CO 80228-1807

http://www.fws.gov/coloradoES http://www.fws.gov/platteriver

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species

¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Birds

NAME **STATUS** Least Tern Sterna antillarum **Endangered** This species only needs to be considered if the following condition applies: • Water-related activities/use in the N. Platte, S. Platte and Laramie River Basins may affect listed species in Nebraska. No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/8505 **Threatened** Mexican Spotted Owl Strix occidentalis lucida There is final critical habitat for this species. Your location is outside the critical habitat. https://ecos.fws.gov/ecp/species/8196 Threatened Piping Plover Charadrius melodus This species only needs to be considered if the following condition applies: • Water-related activities/use in the N. Platte, S. Platte and Laramie River Basins may affect listed species in Nebraska. There is final critical habitat for this species. Your location is outside the critical habitat. https://ecos.fws.gov/ecp/species/6039 Whooping Crane Grus americana **Endangered** This species only needs to be considered if the following condition applies: • Water-related activities/use in the N. Platte, S. Platte and Laramie River Basins may affect listed species in Nebraska. There is final critical habitat for this species. Your location is outside the critical habitat. https://ecos.fws.gov/ecp/species/758 **Fishes** NAME **STATUS** Pallid Sturgeon Scaphirhynchus albus **Endangered** This species only needs to be considered if the following condition

applies:

• Water-related activities/use in the N. Platte, S. Platte and Laramie River Basins may affect listed species in Nebraska.

No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/7162

Flowering Plants

NAME STATUS

Ute Ladies'-tresses Spiranthes diluvialis

Threatened

Threatened

No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/2159

rttps://ecos.tws.gov/ecp/species/2155

Western Prairie Fringed Orchid Platanthera praeclara

lition

This species only needs to be considered if the following condition applies:

• Water-related activities/use in the N. Platte, S. Platte and Laramie River Basins may affect listed species in Nebraska.

No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/1669

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act

¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds</u> of <u>Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ

below. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the E-bird data mapping tool (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found below.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS ACROSS
ITS ENTIRE RANGE. "BREEDS
ELSEWHERE" INDICATES THAT THE
BIRD DOES NOT LIKELY BREED IN
YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Breeds Oct 15 to Jul 31

Golden Eagle Aquila chrysaetos

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA https://ecos.fws.gov/ecp/species/1680

Lewis's Woodpecker Melanerpes lewis

https://ecos.fws.gov/ecp/species/9408

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Willow Flycatcher Empidonax traillii

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA https://ecos.fws.gov/ecp/species/3482

Breeds Jan 1 to Aug 31

Breeds Apr 20 to Sep 30

Breeds May 20 to Aug 31

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (AKN). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>E-bird Explore Data Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science</u> datasets.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and

3. "Non-BCC - Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

Data limitations

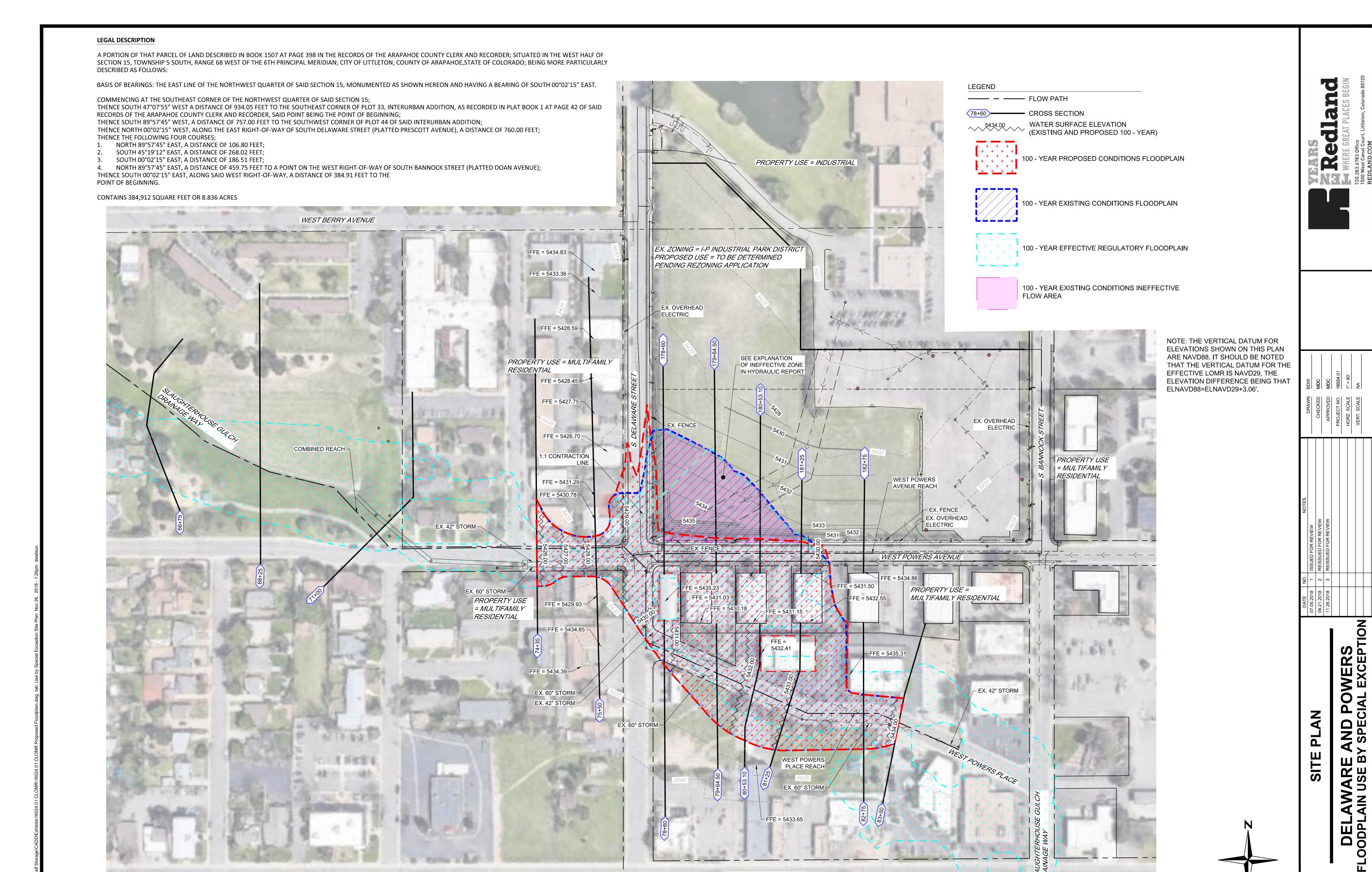
The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

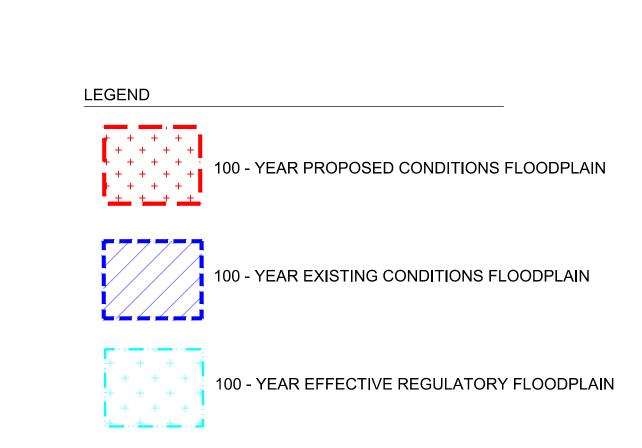
Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters.


Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

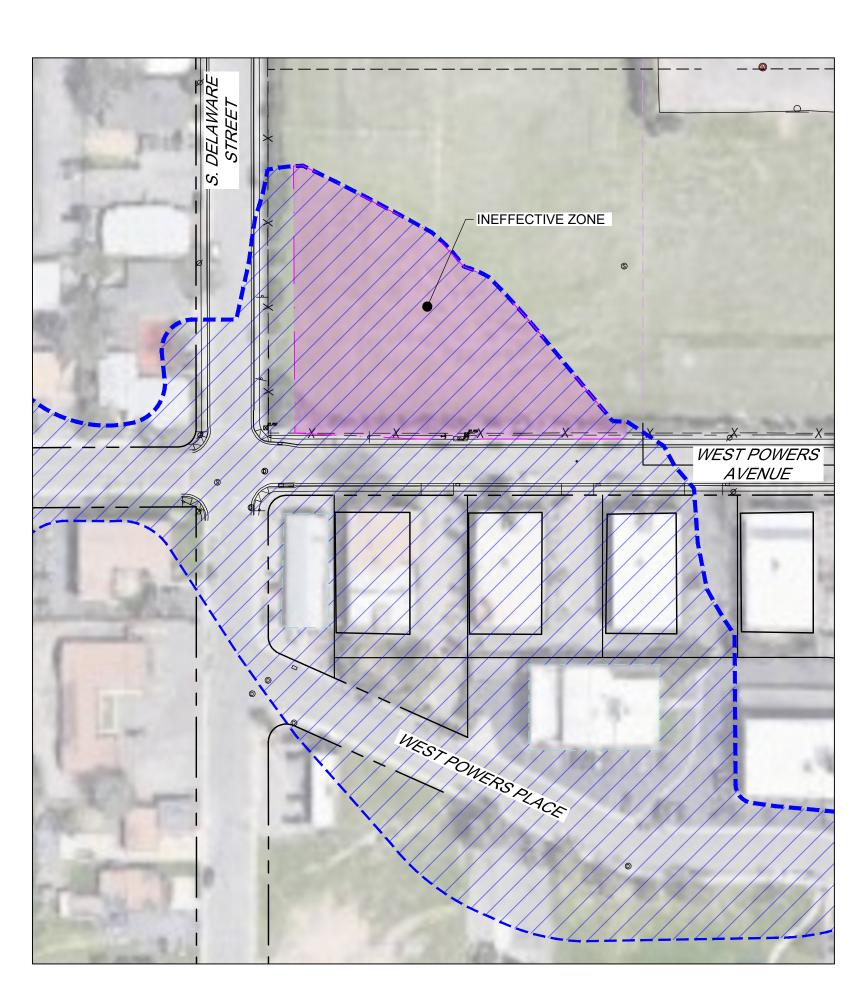
NOT FOR CONSULTATION


Appendix H – Work Map

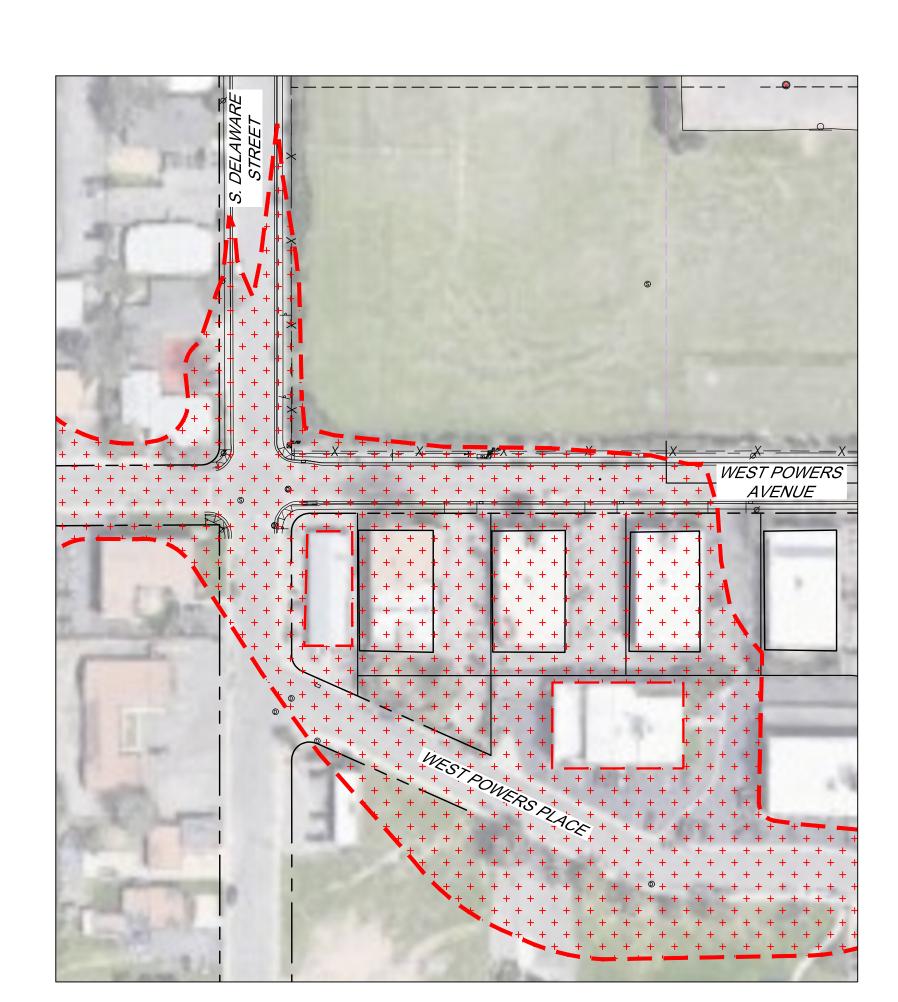
FFE = 5433.65

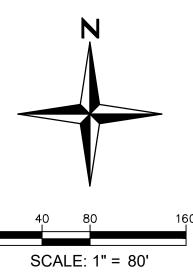
WEST LITTLETON BLVD.

SCALE: 1" = 80'



FLOW AREA


100 - YEAR EXISTING CONDITIONS INEFFECTIVE


100-YEAR EFFECTIVE REGULATORY FLOODPLAIN

100-YEAR EXISTING CONDITIONS FLOODPLAIN

100-YEAR PROPOSED CONDITIONS FLOODPLAIN

SHEET

/ARE AND POWERS
USE BY SPECIAL EXCEPTION

PELAW, FLOODPLAIN U